Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–17.
Article
PubMed
PubMed Central
Google Scholar
Sands KM, Twigg JA, Lewis MAO, Wise MP, Marchesi JR, Smith A, et al. Microbial profiling of dental plaque from mechanically ventilated patients. J Med Microbiol. 2016;65:147–59.
Article
PubMed
PubMed Central
Google Scholar
Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. In: Highlander SK, editor. PLoS One, vol. 7. San Francisco: Public Library of Science; 2012. p. e37919.
Google Scholar
Kianoush N, Adler CJ, Nguyen K-AT, Browne GV, Simonian M, Hunter N. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One. 2014;9:e92940.
Article
PubMed
PubMed Central
Google Scholar
Loesche WJ. Microbiology of dental decay and periodontal disease. In: Baron S, editor. Med. Microbiol. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996.
Google Scholar
White DJ. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci Wiley Online Library. 1997;105:508–22.
Article
Google Scholar
Jin Y, Yip H-K. Supragingival calculus: formation and control. Crit Rev Oral Biol Med. 2002;13:426–41.
Article
PubMed
Google Scholar
Archana V. Calculus detection technologies: where do we stand now? J Med Life Romania. 2014;7:18–23. Carol Davila University Press
Google Scholar
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44.
Article
PubMed
PubMed Central
Google Scholar
Lockhart PB, Brennan MT, Thornhill M, Michalowicz BS, Noll J, Bahrani-Mougeot FK, et al. Poor oral hygiene as a risk factor for infective endocarditis–related bacteremia. J Am Dent Assoc. 2009;140:1238–44.
Article
PubMed
PubMed Central
Google Scholar
Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev. 2000;13:547–58. American Society for Microbiology
Article
PubMed
PubMed Central
Google Scholar
Karnoutsos K, Papastergiou P, Stefanidis S, Vakaloudi A. Periodontitis as a risk factor for cardiovascular disease: the role of anti-phosphorylcholine and anti-cardiolipin antibodies. Hippokratia LITHOGRAPHIA Antoniadis I-Psarras Th GP. 2008;12:144–9.
Google Scholar
Mathu-Muju KR, Li H-F, Hicks J, Nash DA, Kaplan A, Bush HM. Identifying demographic variables related to failed dental appointments in a university hospital-based residency program. Pediatr Dent. 2014;36:296–301.
PubMed
Google Scholar
Holtzman JS, Atchison KA, Gironda MW, Radbod R, Gornbein J. The association between oral health literacy and failed appointments in adults attending a university based general dental clinic. Community Dent Oral Epidemiol. 2014;42:263–70.
Article
PubMed
Google Scholar
Royal Society of Chemistry. Porphine [internet]. The Merck index. 2013 . Available from: https://www.rsc.org/Merck-Index/monograph/m8990/porphine?q=authorize [Accessed 1 Aug 2016].
de Josselin de Jong E, Higham SM, Smith PW, van Daelen CJ, van der Veen MH. Quantified light-induced fluorescence, review of a diagnostic tool in prevention of oral disease. J Appl Phys. 2009;105:102031.
Article
Google Scholar
Konig K, Schneckenburger H, Hemmer J, Tromberg B, Steiner R. In-vivo fluorescence detection and imaging of porphyrin-producing bacteria in the human skin and in the oral cavity for diagnosis of acne vulgaris, caries, and squamous cell carcinoma. Proc SPIE. 1994;2135:129–38.
Article
Google Scholar
Rastogi S, Dwivedi UN, Kankara M. Biomolecules (Introduction, Structure and Functions). In: Porphyrins, vol 6. National Science Digital Library; 2008. p. 1-17. http://nsdl.niscair.res.in/123456789/762.
Evstigneeva RP. Advances and perspectives of porphyrin synthesis. Pure Appl Chem. 1981;53:1129–40.
Article
Google Scholar
Heftmann E, editor. Chromatography: fundamentals and applications of chromatography and related differential migration methods; part B: applications. 5th ed. Amsterdam: Elsevier Science; 1991.
Google Scholar
Goldoni A. Porphyrins: fascinating molecules with biological significance. Elettra Highlights. 2001–2002;2002:64–5.
Google Scholar
Goldberg A, KEL MC, Moore MR, Rimington C. Disorders of porphyrin metabolism. New York: Springer Science; 2013.
Polo CF, Frisardi AL, Resnik ER, Schoua AEM, Del Batlle CAM. Factors influencing fluorescence spectra of free porphyrins. Clin Chem. 1988;34:757–60.
PubMed
Google Scholar
van der Veen MH, Thomas RZ, Huysmans MCDNJM, de Soet JJ. Red autofluorescence of dental plaque bacteria. Caries Res. 2006;40:542–5.
Article
PubMed
Google Scholar
Bjurshammar N, Johannsen A, Buhlin K, Tranæus S, Östman C. On the red fluorescence emission of Aggregatibacter actinomycetemcomitans. 2012;2:299–306.
Fujinaka H, Takeshita T, Sato H, Yamamoto T, Nakamura J, Hase T, et al. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque. Arch Microbiol. 2013;195:371–83.
Article
PubMed
Google Scholar
Morou-Bermudez E, Rodriguez S, Bello AS, Dominguez-Bello MG. Urease and dental plaque microbial profiles in children. In: Lemos JA, editor. PLoS one, vol. 10. San Francisco: Public Library of Science; 2015. p. e0139315.
Google Scholar
Roy K, Bottrill I, Ingrams DR, Pankratov MM, Rebeiz EE, Woo P, et al. Diagnostic fluorescence spectroscopy of oral mucosa. Bellingham: Proc. SPIE Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V; 1995. p. 135–42.
Heintzelman DL, Utzinger U, Fuchs H, Zuluaga A, Gossage K, Gillenwater AM, et al. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol. 2007;72:103–13.
Article
Google Scholar
Roblyer D, Richards-Kortum R, Sokolov K, El-Naggar AK, Williams MD, Kurachi C, et al. Multispectral optical imaging device for in vivo detection of oral neoplasia. J Biomed Opt. 2008;13:24019.
Article
Google Scholar
Volgenant CMC, Hoogenkamp MA, Buijs MJ, Zaura E, (Bob) ten Cate JM, van der Veen MH. Red fluorescent biofilm: the thick, the old, and the cariogenic. J Oral Microbiol. 2016;8:8.
Article
Google Scholar
van der Veen MH, Volgenant CMC, Keijser B, (Bob) ten Cate JM, Crielaard W. Dynamics of red fluorescent dental plaque during experimental gingivitis—a cohort study. J Dent. 2016;48:71–6.
Article
PubMed
Google Scholar
Konig K, Flemming G, Hibst R. Laser-induced autofluorescence spectroscopy of dental caries. Cell Mol Biol France. 1998;44:1293–300.
Google Scholar
Hope CK, de Josselin de Jong E, Field MRT, Valappil SP, Higham SM. Photobleaching of red fluorescence in oral biofilms. J Periodontal Res. 2011;46:228–34. Blackwell Publishing Ltd
Article
PubMed
Google Scholar
Thoms M. Detection of intaoral lesions using a fluorescence camera. Bellingham: Proc SPIE Lasers in Dentistry XII; 2006. p. 613705.
Timoshchuk M-AI, Ridge JS, Rugg AL, Nelson LY, Kim AS, Seibel EJ. Real-time porphyrin detection in plaque and caries: a case study. 2015;9306:93060C.
Joseph B, Prasanth CS, Jayanthi JL, Presanthila J, Subhash N. Detection and quantification of dental plaque based on laser-induced autofluorescence intensity ratio values. J Biomed Opt. 2015;20:48001.
Article
Google Scholar
Borisova E, Uzunov T, Avramov L. Laser-induced autofluorescence study of caries model in vitro. Lasers Med Sci. 2006;21:34–41.
Article
PubMed
Google Scholar
Pretty IA, Edgar WM, Smith PW, Higham SM. Quantification of dental plaque in the research environment. J Dent. 2005;33:193–207.
Article
PubMed
Google Scholar
Kang J, Ji Z. Dental plaque quantification using mean-shift-based image segmentation 2010. Int Symp Comput Commun Control Autom. 2010;2:470–3.
Google Scholar
Sharmila M. Detection of dental plaque using image processing, vol. 18. India: International Journal of Advanced Information Science and Technology, Vol. 2; 2013. p. 61–5.
Kang J, Min L, Luan Q, Li X, Liu J. Novel modified fuzzy C-means algorithm with applications. Digit Signal Process. 2009;19:309–19. Orlando: Academic Press, Inc
Rechmann P, Liou SW, Rechmann BMT, Featherstone JDB. Performance of a light fluorescence device for the detection of microbial plaque and gingival inflammation. Clin Oral Investig. 2016;20:151–9.
Article
PubMed
Google Scholar
Rechmann P, Liou SW, Rechmann BM, Featherstone JD. SOPROCARE - 450 nm wavelength detection tool for microbial plaque and gingival inflammation: a clinical study. Lasers Dent. 2014;8929:892906.
Article
Google Scholar
Gambetta-Tessini K, Mariño R, Ghanim A, Adams GG, Manton DJ. Validation of quantitative light-induced fluorescence-digital in the quantification of demarcated hypomineralized lesions of enamel. J Investig Clin Dent. 2017;8:e12259.
Article
Google Scholar
Volgenant CMC, Fernandez y Mostajo M, NAM R, van der Weijden FA, ten Cate JM, van der Veen MH. Comparison of red autofluorescing plaque and disclosed plaque—a cross-sectional study. Clin. Oral Investig. Clin Oral Investig. 2016;20:2551–8.
Article
PubMed
PubMed Central
Google Scholar
Miller CC, Burnside G, Higham SM, Flannigan NL. Quantitative light-induced fluorescence-digital as an oral hygiene evaluation tool to assess plaque accumulation and enamel demineralization in orthodontics. Angle Orthod. 2016;86:991–7.
Article
PubMed
Google Scholar
Park T-Y, Choi H-S, Ku H-W, Kim H-S, Lee Y-J, Min J-B. Application of quantitative light-induced fluorescence to determine the depth of demineralization of dental fluorosis in enamel microabrasion: a case report. Restor Dent Endod. 2016;41:225–30.
Article
PubMed
PubMed Central
Google Scholar
Jun M-K, Ku H-M, Kim E, Kim H-E, Kwon H-K, Kim B-I. Detection and analysis of enamel cracks by quantitative light-induced fluorescence technology. J Endod. 2016;42:500–4.
Article
PubMed
Google Scholar
Cheng HD, Jiang XH, Sun Y, Wang JL. Color image segmentation : advances & prospects. Book. 2000;34
Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13:146–68.
Article
Google Scholar
de Paz LEC. Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol Am Soc Microbiol. 2009;75:1734–9.
Article
Google Scholar
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–37. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA
Article
PubMed
Google Scholar
Vaidya S, Ahuja N, Bajaj P, Kapoor C, Sabarwal R, Rajpal K. Objective measurement of shade color in age estimation. J Forensic Dent Sci India. 2015;7:171–4. Medknow Publications & Media Pvt Ltd
Article
Google Scholar
Lamster IB, Asadourian L, Del Carmen T, Friedman PK. The aging mouth: differentiating normal aging from disease. Periodontol. 2016;72:96–107.
Article
Google Scholar
Kidd EA. Diagnosis of secondary caries. J Dent Educ. 2001;65:997–1000.
PubMed
Google Scholar
Demirci M, Tuncer S, Yuceokur AA. Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients. Eur J Dent. 2010;4:270–9. Dental Investigations Society
PubMed
PubMed Central
Google Scholar
Price W. Nutrition and physical degeneration: a comparision of primitive and modern diets and their effects. United Kingdom: Benediction Classics. Oxford City Press; 2010.