He W, Yu F, Li C, Pan J, Zhuang R, Duan P. A systematic review and meta-analysis on the efficacy of low-level laser therapy in the management of complication after mandibular third molar surgery. Lasers Med Sci. 2015;30(6):1779–88.
Article
Google Scholar
Ferrante M, Petrini M, Trentini P, Perfetti G, Spoto G. Effect of low-level laser therapy after extraction of impacted lower third molars. Lasers Med Sci. 2013;28(3):845–9.
Article
Google Scholar
Brignardello-Petersen R, Carrasco-Labra A, Araya I, Yanine N, Beyene J, Shah PS. Is adjuvant laser therapy effective for preventing pain, swelling, and trismus after surgical removal of impacted mandibular third molars? A systematic review and meta-analysis. J Oral Maxillofac Surg. 2012;70(8):1789–801.
Article
Google Scholar
Amarillas-Escobar ED, Toranzo-Fernández JM, Martínez-Rider R, Noyola-Frías MA, Hidalgo-Hurtado JA, Serna VMF, Gordillo-Moscoso A, Pozos-Guillén AJ. Use of therapeutic laser after surgical removal of impacted lower third molars. J Oral Maxillofac Surg. 2010;68(2):319–24.
Article
Google Scholar
Rana M, Gellrich N-C, Ghassemi A, Gerressen M, Riediger D, Modabber A. Three-dimensional evaluation of postoperative swelling after third molar surgery using 2 different cooling therapy methods: a randomized observer-blind prospective study. J Oral Maxillofac Surg. 2011;69(8):2092–8.
Article
Google Scholar
Osunde OD, Saheeb BD. Effect of age, sex, and level of surgical difficulty on inflammatory complications after third molar surgery. J Oral Maxillofac Surg. 2015;14(1):7–12.
Article
Google Scholar
López-Ramírez M, Vílchez-Pérez M, Gargallo-Albiol J, Arnabat-Domínguez J, Gay-Escoda C. Efficacy of low-level laser therapy in the management of pain, facial swelling, and postoperative trismus after a lower third molar extraction. A preliminary study. Lasers Med Sci. 2012;27(3):559–66.
Article
Google Scholar
Lago-Méndez L, Diniz-Freitas M, Senra-Rivera C, Gude-Sampedro F, Rey JMG, García-García A. Relationships between surgical difficulty and postoperative pain in lower third molar extractions. J Oral Maxillofac Surg. 2007;65(5):979–83.
Article
Google Scholar
El-Sound N, El Shenawy H. A randomized double blind clinical study on the efficacy of low level laser therapy in reducing pain after simple third molar extraction. Maced J Med Sci. 2010;3(3):303–6.
Article
Google Scholar
Fernando S, Hill C, Walker R. A randomised double blind comparative study of low level laser therapy following surgical extraction of lower third molar teeth. Br J Oral Maxillofac Surg. 1993;31(3):170–2.
Article
Google Scholar
Sierra SO, Deana AM, Ferrari RAM, Albarello PM, Bussadori SK, Fernandes KPS. Effect of low-level laser therapy on the post-surgical inflammatory process after third molar removal: study protocol for a double-blind randomized controlled trial. Trials. 2013;14(1):373.
Article
Google Scholar
Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971;122(4):532–5.
Article
Google Scholar
Aoki A, Mizutani K, Schwarz F, Sculean A, Yukna RA, Takasaki AA, Romanos GE, Taniguchi Y, Sasaki KM, Zeredo JL. Periodontal and peri-implant wound healing following laser therapy. Periodontology 2000. 2015;68(1):217–69.
Article
Google Scholar
Albertini R, Villaverde A, Aimbire F, Salgado M, Bjordal J, Alves L, Munin E, Costa M. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B. 2007;89(1):50–5.
Article
Google Scholar
Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014;30(5):465–75.
Article
Google Scholar
Fabre HS, Navarro RL, Oltramari-Navarro PV, Oliveira RF, Pires-Oliveira DA, Andraus RA, Fuirini N, Fernandes KB. Anti-inflammatory and analgesic effects of low-level laser therapy on the postoperative healing process. J Phys Ther Sci. 2015;27(6):1645–8.
Article
Google Scholar
Raman A, Srividhya S, Kumar M, Laxman A, Kumar M, Kailasam S. Low level laser therapy: a concise review on its applications. J Indian Acad Oral Med Radiol. 2013;25(4):291.
Google Scholar
Roynesdal A, Björnland T, Barkvoll P, Haanaes H. The effect of soft-laser application on postoperative pain and swelling: a double-blind, crossover study. Int J Oral Maxillofac Surg. 1993;22(4):242–5.
Article
Google Scholar
Batinjan G, Zore Z, Čelebić A, Papić M, Pandurić DG, Zore IF. Thermographic monitoring of wound healing and oral health-related quality of life in patients treated with laser (aPDT) after impacted mandibular third molar removal. Int J Oral Maxillofac Surg. 2014;43(12):1503–8.
Article
Google Scholar
Mozzati M, Martinasso G, Cocero N, Pol R, Maggiora M, Muzio G, Canuto RA. Influence of superpulsed laser therapy on healing processes following tooth extraction. Photomed Laser Surg. 2011;29(8):565–71.
Article
Google Scholar
Torkzaban P, Kasraei S, Torabi S, Farhadian M. Low-level laser therapy with 940 nm diode laser on stability of dental implants: a randomized controlled clinical trial. Lasers Med Sci. 2018;33(2):287–93.
Article
Google Scholar
Eroglu CN, Keskin Tunc S. Effectiveness of single session of low-level laser therapy with a 940 nm wavelength diode laser on pain, swelling, and trismus after impacted third molar surgery. Photomed Laser Surg. 2016;34(9):406–10.
Article
Google Scholar
Eshghpour M, Ahrari F, Takallu M. Is low-level laser therapy effective in the management of pain and swelling after mandibular third molar surgery? J Oral Maxillofac Surg. 2016;74(7):1322. e1321-1322. e1328.
Article
Google Scholar
Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4(1):26.
Article
Google Scholar
Hamid MA. Low-level laser therapy on postoperative pain after mandibular third molar surgery. Ann Maxillofac Surg. 2017;7(2):207–16.
Article
Google Scholar
Markovic A, Todorovic L. Effectiveness of dexamethasone and low-power laser in minimizing oedema after third molar surgery: a clinical trial. Int J Oral Maxillofac Surg. 2007;36(3):226–9.
Article
Google Scholar
Sortino F, Cicciù M. Strategies used to inhibit postoperative swelling following removal of impacted lower third molar. Dent Res J. 2011;8(4):162.
Article
Google Scholar
Isola G, Matarese M, Ramaglia L, Cicciù M, Matarese G. Evaluation of the efficacy of celecoxib and ibuprofen on postoperative pain, swelling, and mouth opening after surgical removal of impacted third molars: a randomized, controlled clinical trial. Int J Oral Maxillofac Surg. 2019;48(10):1348–54.
Article
Google Scholar
Kingsley JD, Demchak T, Mathis R. Low-level laser therapy as a treatment for chronic pain. Front Physiol. 2014;5:306.
Article
Google Scholar
Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RAB. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Ther. 2006;24(2):158–68.
Article
Google Scholar
Aras MH, Gungormus M. The effect of low-level laser therapy on trismus and facial swelling following surgical extraction of a lower third molar. Photomed Laser Surg. 2009;27(1):21–4.
Article
Google Scholar
Taube S, Piironen J, Ylipaavalniemi P. Helium-neon laser therapy in the prevention of postoperative swelling and pain after wisdom tooth extraction. Proc Finn Dent Soc Suom Hammaslaakariseuran toimituksia. 1990;86(1):23–7.
Google Scholar
Kazancioglu HO, Ezirganli S, Demirtas N. Comparison of the influence of ozone and laser therapies on pain, swelling, and trismus following impacted third-molar surgery. Lasers Med Sci. 2014;29(4):1313–9.
Article
Google Scholar
Meneguzzo DT, Lopes LA, Pallota R, Soares-Ferreira L, Lopes-Martins RA, Ribeiro MS. Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci. 2013;28(3):973–80.
Article
Google Scholar
Pedersen A. Interrelation of complaints after removal of impacted mandibular third molars. Int J Oral Surg. 1985;14(3):241–4.
Article
Google Scholar
Carrillo JS, Calatayud J, Manso FJ, Barberia E, Martinez JM, Donado M. A randomized double-blind clinical trial on the effectiveness of helium-neon laser in the prevention of pain, swelling and trismus after removal of impacted third molars. Int Dent J. 1990;40(1):31–6.
PubMed
Google Scholar
AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012;27(1):237–49.
Article
Google Scholar
Yuasa H, Sugiura M. Clinical postoperative findings after removal of impacted mandibular third molars: prediction of postoperative facial swelling and pain based on preoperative variables. Br J Oral Maxillofac Surg. 2004;42(3):209–14.
Article
Google Scholar
Bello SA, Adeyemo WL, Bamgbose BO, Obi EV, Adeyinka AA. Effect of age, impaction types and operative time on inflammatory tissue reactions following lower third molar surgery. Head Face Med. 2011;7(1):8.
Article
Google Scholar
Cicciù M, Stacchi C, Fiorillo L, Cervino G, Troiano G, Vercellotti T, Herford A, Galindo-Moreno P, Di Lenarda R. Piezoelectric bone surgery for impacted lower third molar extraction compared with conventional rotary instruments: a systematic review, meta-analysis, and trial sequential analysis. Int J Oral Maxillofac Surg. 2020;50:121–31.
Article
Google Scholar