Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48. https://doi.org/10.1016/S1470-2045(14)70442-5.
Article
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.
Article
PubMed
Google Scholar
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. https://doi.org/10.1056/NEJMra1011442.
Article
PubMed
Google Scholar
Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol. 2016;43(6):676–81. https://doi.org/10.1053/j.seminoncol.2016.11.004.
Article
PubMed
PubMed Central
Google Scholar
Ruggiero SL. Bisphosphonate-related osteonecrosis of the jaw: an overview. Ann N Y Acad Sci. 2011;1218:38–46. https://doi.org/10.1111/j.1749-6632.2010.05768.x.
Article
PubMed
Google Scholar
Glass DA II, Patel MS, Karsenty G. A new insight into the formation of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349(26):2479–80. https://doi.org/10.1056/NEJMp038176.
Article
PubMed
Google Scholar
Guyatt GH, Cranney A, Griffith L, Walter S, Krolicki N, Favus M, et al. Summary of meta-analyses of therapies for postmenopausal osteoporosis and the relationship between bone density and fractures. Endocrinol Metab Clin North Am. 2002;31(3):659–79. https://doi.org/10.1016/s0889-8529(02)00024-5.
Article
PubMed
Google Scholar
Kuroshima S, Sasaki M, Sawase T. Medication-related osteonecrosis of the jaw: a literature review. J Oral Biosci. 2019;61(2):99–104. https://doi.org/10.1016/j.job.2019.03.005.
Article
PubMed
Google Scholar
Almazrooa SA, Woo SB. Bisphosphonate and nonbisphosphonate-associated osteonecrosis of the jaw: a review. J Am Dent Assoc. 2009;140(7):864–75. https://doi.org/10.14219/jada.archive.2009.0280.
Article
PubMed
Google Scholar
DeSesa CR, Appugounder S, Haberland C, Johnson MP. Osteonecrosis of the jaw in association with chemotherapy in the setting of cutaneous T-cell lymphoma. J Oral Maxillofac Surg. 2016;74(2):292–301. https://doi.org/10.1016/j.joms.2015.07.019.
Article
PubMed
Google Scholar
Baur DA, Weber JM, Collette DC, Dhaliwal H, Quereshy F. Osteonecrosis of the jaws unrelated to bisphosphonate exposure: a series of 4 cases. J Oral Maxillofac Surg. 2012;70(12):2802–8. https://doi.org/10.1016/j.joms.2012.02.019.
Article
PubMed
Google Scholar
Santini D, Vincenzi B, Avvisati G, Dicuonzo G, Battistoni F, Gavasci M, et al. Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin Cancer Res. 2002;8(5):1080–4.
PubMed
Google Scholar
Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther. 2002;302(3):1055–61. https://doi.org/10.1124/jpet.102.035295.
Article
PubMed
Google Scholar
Landesberg R, Cozin M, Cremers S, Woo V, Kousteni S, Sinha S, et al. Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg. 2008;66(5):839–47. https://doi.org/10.1016/j.joms.2008.01.026.
Article
PubMed
PubMed Central
Google Scholar
Badros A, Weikel D, Salama A, Goloubeva O, Schneider A, Rapoport A, et al. Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol. 2006;24(6):945–52. https://doi.org/10.1200/JCO.2005.04.2465.
Article
PubMed
Google Scholar
Bauss F, Pfister T, Papapoulos S. Ibandronate uptake in the jaw is similar to long bones and vertebrae in the rat. J Bone Miner Metab. 2008;26(4):406–8. https://doi.org/10.1007/s00774-007-0837-x.
Article
PubMed
Google Scholar
Morris PG, Hudis C, Carrasquillo J, Larson S, Grewal RK, Van Poznak C. Bone scans, bisphosphonates, and a lack of acute changes within the mandible. J Oral Maxillofac Surg. 2011;69(1):114–9. https://doi.org/10.1016/j.joms.2010.06.210.
Article
PubMed
Google Scholar
Otto S, Pautke C, Opelz C, Westphal I, Drosse I, Schwager J, et al. Osteonecrosis of the jaw: effect of bisphosphonate type, local concentration, and acidic milieu on the pathomechanism. J Oral Maxillofac Surg. 2010;68(11):2837–45. https://doi.org/10.1016/j.joms.2010.07.017.
Article
PubMed
Google Scholar
Hoff A, Toth B, Altundag K. Osteonecrosis of the jaw in patients receiving intravenous bisphosphonate therapy. J Clin Oncol. 2006;24:8528.
Article
Google Scholar
Durie BG, Katz M, Crowley J. Osteonecrosis of the jaw and bisphosphonates. N Engl J Med. 2005;353(1):99–102. https://doi.org/10.1056/NEJM200507073530120 (discussion 99–102).
Article
PubMed
Google Scholar
Mavrokokki T, Cheng A, Stein B, Goss A. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg. 2007;65(3):415–23. https://doi.org/10.1016/j.joms.2006.10.061.
Article
PubMed
Google Scholar
Smith BC, Underbakke ES, Kulp DW, Schief WR, Marletta MA. Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation. Proc Natl Acad Sci USA. 2013;110(38):E3577–86. https://doi.org/10.1073/pnas.1313331110.
Article
PubMed
PubMed Central
Google Scholar
Tejero J, Hannibal L, Mustovich A, Stuehr DJ. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase. J Biol Chem. 2010;285(35):27232–40. https://doi.org/10.1074/jbc.M110.138842.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Liu J, Shi H, Yang K, Wang P, Wang G, et al. Communication between nitric oxide synthase and positively-charged surface and bone formation promotion. Colloids Surf B Biointerfaces. 2016;148:354–62. https://doi.org/10.1016/j.colsurfb.2016.08.049.
Article
PubMed
Google Scholar
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. https://doi.org/10.1093/nar/16.3.1215.
Article
PubMed
PubMed Central
Google Scholar
Erciyas K, Pehlivan S, Sever T, Igci M, Pehlivan M, Arslan A, et al. Endothelial nitric oxide synthase gene polymorphisms associated with periodontal diseases in Turkish adults. Afr J Biotechnol. 2010;9(21):3042–7.
Google Scholar
Soni Y, Softness K, Arora H, Ramasamy R. The Yin Yang role of nitric oxide in prostate cancer. Am J Mens Health. 2020;14(1):1557988320903191. https://doi.org/10.1177/1557988320903191.
Article
PubMed
PubMed Central
Google Scholar
Collin-Osdoby P, Rothe L, Bekker S, Anderson F, Osdoby P. Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis. J Bone Miner Res. 2000;15(3):474–88. https://doi.org/10.1359/jbmr.2000.15.3.474.
Article
PubMed
Google Scholar
Limones A, Sáez-Alcaide LM, Díaz-Parreño SA, Helm A, Bornstein MM, Molinero-Mourelle P. Medication-related osteonecrosis of the jaws (MRONJ) in cancer patients treated with denosumab VS. zoledronic acid: a systematic review and meta-analysis. Med Oral Patol Oral Cir Bucal. 2020;25(3):e326–36. https://doi.org/10.4317/medoral.23324.
Article
PubMed
PubMed Central
Google Scholar
Katsarelis H, Shah NP, Dhariwal DK, Pazianas M. Infection and medication-related osteonecrosis of the jaw. J Dent Res. 2015;94(4):534–9. https://doi.org/10.1177/0022034515572021.
Article
PubMed
Google Scholar
Tsurushima H, Kokuryo S, Sakaguchi O, Tanaka J, Tominaga K. Bacterial promotion of bisphosphonate-induced osteonecrosis in Wistar rats. Int J Oral Maxillofac Surg. 2013;42(11):1481–7. https://doi.org/10.1016/j.ijom.2013.06.011.
Article
PubMed
Google Scholar
Twiss IM, Pas O, Ramp-Koopmanschap W, Den Hartigh J, Vermeij P. The effects of nitrogen-containing bisphosphonates on human epithelial (Caco-2) cells, an in vitro model for intestinal epithelium. J Bone Miner Res. 1999;14(5):784–91. https://doi.org/10.1359/jbmr.1999.14.5.784.
Article
PubMed
Google Scholar
Suri S, Mönkkönen J, Taskinen M, Pesonen J, Blank MA, Phipps RJ, et al. Nitrogen-containing bisphosphonates induce apoptosis of Caco-2 cells in vitro by inhibiting the mevalonate pathway: a model of bisphosphonate-induced gastrointestinal toxicity. Bone. 2001;29(4):336–43. https://doi.org/10.1016/s8756-3282(01)00589-0.
Article
PubMed
Google Scholar
Karasneh JA, Darwazeh AM, Hassan AF, Thornhill M. Association between recurrent aphthous stomatitis and inheritance of a single-nucleotide polymorphism of the NOS2 gene encoding inducible nitric oxide synthase. J Oral Pathol Med. 2011;40(9):715–20. https://doi.org/10.1111/j.1600-0714.2011.01039.x.
Article
PubMed
Google Scholar
Karasneh JA, Baszrafshani R, Thornhill M, Ollier WE. Endothelial nitric oxide synthase gene polymorphisms are not associated with recurrent aphthous stomatitis. Arch Oral Biol. 2009;54(6):583–7. https://doi.org/10.1016/j.archoralbio.2009.03.008.
Article
PubMed
Google Scholar
Leeson CP, Hingorani AD, Mullen MJ, Jeerooburkhan N, Kattenhorn M, Cole TJ, et al. Glu298Asp endothelial nitric oxide synthase gene polymorphism interacts with environmental and dietary factors to influence endothelial function. Circ Res. 2002;90(11):1153–8. https://doi.org/10.1161/01.res.0000020562.07492.d4.
Article
PubMed
Google Scholar
Antoniades C, Tousoulis D, Vasiliadou C, Pitsavos C, Toutouza M, Tentolouris C, et al. Genetic polymorphisms G894T on the eNOS gene is associated with endothelial function and vWF levels in premature myocardial infarction survivors. Int J Cardiol. 2006;107(1):95–100. https://doi.org/10.1016/j.ijcard.2005.02.039.
Article
PubMed
Google Scholar
Lee YC, Wu WJ, Liu CC, Wang CJ, Li WM, Huang CH, et al. The associations among eNOS G894T gene polymorphism, erectile dysfunction, and benign prostate hyperplasia-related lower urinary tract symptoms. J Sex Med. 2009;6(11):3158–65. https://doi.org/10.1111/j.1743-6109.2009.01353.x.
Article
PubMed
Google Scholar
Diakite B, Hamzi K, Slassi I, El Yahyaoui M, El Alaoui MM, Habbal R, et al. G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco. Meta Gene. 2014;2:349–57. https://doi.org/10.1016/j.mgene.2014.04.003.
Article
PubMed
PubMed Central
Google Scholar
Saidi S, Mallat SG, Almawi WY, Mahjoub T. Endothelial nitric oxide synthase Glu298Asp, 4b/a, and -786T>C gene polymorphisms and the risk of ischemic stroke. Acta Neurol Scand. 2010;121(2):114–9. https://doi.org/10.1111/j.1600-0404.2009.01192.x.
Article
PubMed
Google Scholar
Berger K, Stögbauer F, Stoll M, Wellmann J, Huge A, Cheng S, et al. The glu298asp polymorphism in the nitric oxide synthase 3 gene is associated with the risk of ischemic stroke in two large independent case–control studies. Hum Genet. 2007;121(2):169–78. https://doi.org/10.1007/s00439-006-0302-2.
Article
PubMed
Google Scholar