Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.
PubMed
Google Scholar
Du M, Li Z, Jiang H, Wang X, Feng X, Hu D, Lin H, Wang B, Si Y, Wang C, et al. Dental caries status and its associated factors among 3- to 5-year-old children in China: a national survey. Chin J Dent Res. 2018;21(3):167–79.
PubMed
Google Scholar
Llena C, Calabuig E. Risk factors associated with new caries lesions in permanent first molars in children: a 5-year historical cohort follow-up study. Clin Oral Investig. 2018;22(3):1579–86.
PubMed
Google Scholar
Kraljevic I, Filippi C, Filippi A. Risk indicators of early childhood caries (ECC) in children with high treatment needs. Swiss Dent J. 2017;127(5):398–410.
PubMed
Google Scholar
Jordan AR, Becker N, Jöhren HP, Zimmer S. Early childhood caries and caries experience in permanent dentition: a 15-year cohort study. Swiss Dent J. 2016;126(2):120–5.
PubMed
Google Scholar
Li Y, Wang W. Predicting caries in permanent teeth from caries in primary teeth: an eight-year cohort study. J Dent Res. 2002;81(8):561–6.
PubMed
Google Scholar
Oubenyahya H, Bouhabba N. General anesthesia in the management of early childhood caries: an overview. J Dent Anesth Pain Med. 2019;19(6):313–22.
PubMed
Google Scholar
Corrêa-Faria P, Daher A, Freire M, de Abreu M, Bönecker M, Costa LR. Impact of untreated dental caries severity on the quality of life of preschool children and their families: a cross-sectional study. Qual Life Res Int J Qual Life Asp Treat Care Rehab. 2018;27(12):3191–8.
Google Scholar
Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, Knight R, Ling J, Xu J. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe. 2015;18(3):296–306.
PubMed
Google Scholar
Zhang Y, Huang S, Jia S, Sun Z, Li S, Li F, Zhang L, Lu J, Tan K, Teng F, et al. The predictive power of saliva electrolytes exceeds that of saliva microbiomes in diagnosing early childhood caries. J Oral Microbiol. 2021;13(1):1921486.
PubMed
Google Scholar
Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci. 2017;9(11):e1.
PubMed
Google Scholar
Kelly AM, Kallistova A, Küchler EC, Romanos HF, Lips A, Costa MC, Modesto A, Vieira AR. Measuring the microscopic structures of human dental enamel can predict caries experience. J Pers Med. 2020;10(1):5.
Google Scholar
Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco IM Jr, Schupack BI, Brancher JA, Pecharki GD, Küchler EC, Tannure PN, et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS ONE. 2012;7(9):e45022.
PubMed
Google Scholar
Van Nieuw AA, Bolscher JG, Veerman EC. Salivary proteins: protective and diagnostic value in cariology? Caries Res. 2004;38(3):247–53.
Google Scholar
Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000. 2016;70(1):80–92.
PubMed
Google Scholar
Si Y, Ao S, Wang W, Chen F, Zheng S. Magnetic bead-based salivary peptidome profiling analysis for severe early childhood caries. Caries Res. 2015;49(1):63–9.
PubMed
Google Scholar
Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, Zheng S. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med. 2016;14(1):240.
PubMed
Google Scholar
Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388(10053):1545–1602.
Machiulskiene V, Campus G, Carvalho JC, Dige I, Ekstrand KR, Jablonski-Momeni A, Maltz M, Manton DJ, Martignon S, Martinez-Mier EA, et al. Terminology of dental caries and dental caries management: consensus report of a workshop organized by ORCA and cariology research group of IADR. Caries Res. 2020;54(1):7–14.
PubMed
Google Scholar
Corrêa-Faria P, Paixão-Gonçalves S, Paiva SM, Pordeus IA. Incidence of dental caries in primary dentition and risk factors: a longitudinal study. Braz Oral Res. 2016;30(1):e59.
Google Scholar
Fan CC, Wang WH, Xu T, Zheng SG. Risk factors of early childhood caries (ECC) among children in Beijing—a prospective cohort study. BMC Oral Health. 2019;19(1):34.
PubMed
PubMed Central
Google Scholar
Evans RW, Feldens CA, Phantunvanit P. A protocol for early childhood caries diagnosis and risk assessment. Community Dent Oral Epidemiol. 2018;46(5):518–25.
PubMed
Google Scholar
Lin YT, Kalhan AC, Lin YJ, Kalhan TA, Chou CC, Gao XL, Hsu CS. Risk assessment models to predict caries recurrence after oral rehabilitation under general anaesthesia: a pilot study. Int Dent J. 2018;68(6):378–85.
PubMed
Google Scholar
Graves CE, Berkowitz RJ, Proskin HM, Chase I, Weinstein P, Billings R. Clinical outcomes for early childhood caries: influence of aggressive dental surgery. J Dent Child (Chic). 2004;71(2):114–7.
Google Scholar
Foster T, Perinpanayagam H, Pfaffenbach A, Certo M. Recurrence of early childhood caries after comprehensive treatment with general anesthesia and follow-up. J Dent Child (Chic). 2006;73(1):25–30.
Google Scholar
Wang K, Wang Y, Wang X, Ren Q, Han S, Ding L, Li Z, Zhou X, Li W, Zhang L. Comparative salivary proteomics analysis of children with and without dental caries using the iTRAQ/MRM approach. J Transl Med. 2018;16(1):11.
PubMed
PubMed Central
Google Scholar
Prodan A, Brand H, Imangaliyev S, Tsivtsivadze E, van der Weijden F, de Jong A, Paauw A, Crielaard W, Keijser B, Veerman E: A Study of the Variation in the Salivary Peptide Profiles of Young Healthy Adults Acquired Using MALDI-TOF MS. PLoS One 2016, 11(6):e0156707.
Tao R, Jurevic RJ, Coulton KK, Tsutsui MT, Roberts MC, Kimball JR, Wells N, Berndt J, Dale BA. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother. 2005;49(9):3883–8.
PubMed
Google Scholar
Jurczak A, Kościelniak D, Papież M, Vyhouskaya P, Krzyściak W. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression. Biol Res. 2015;48:61.
PubMed
Google Scholar
Tian C, Sun X, Liu X, Huang X, Chen F, Zheng S: Salivary peptidome profiling analysis for occurrence of new carious lesions in patients with severe early childhood caries. PloS one 2017, 12(8):e0182712.
Ao S, Sun X, Shi X, Huang X, Chen F, Zheng S. Longitudinal investigation of salivary proteomic profiles in the development of early childhood caries. J Dent. 2017;61:21–7.
PubMed
Google Scholar
Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Salivary proteins and peptides in the aetiology of caries in children: Systematic literature review. Oral Dis. 2019;25(4):1048–56.
PubMed
Google Scholar
Guedes SFF, Neves BG, Bezerra DS, Souza G, Lima-Neto ABM, Guedes MIF, Duarte S, Rodrigues LKA: Saliva proteomics from children with caries at different severity stages. Oral Dis 2020.
Choi S, Baik JE, Jeon JH, Cho K, Seo DG, Kum KY, Yun CH, Han SH. Identification of Porphyromonas gingivalis lipopolysaccharide-binding proteins in human saliva. Mol Immunol. 2011;48(15–16):2207–13.
PubMed
Google Scholar
Baik JE, Hong SW, Choi S, Jeon JH, Park OJ, Cho K, Seo DG, Kum KY, Yun CH, Han SH. Alpha-amylase is a human salivary protein with affinity to lipopolysaccharide of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol. 2013;28(2):142–53.
PubMed
Google Scholar
Kozlovsky A, Wolff A, Saminsky M, Mazor Y, Venezia E, Bar-Ness Greenstein R. Effect of Aggregatibacter actinomycetemcomitans from Aggressive Periodontitis patients on Streptococcus mutans. Oral Dis. 2015;21(8):955–61.
PubMed
Google Scholar
Mattos-Graner RO, Smith DJ, King WF, Mayer MP. Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res. 2000;79(6):1371–7.
PubMed
Google Scholar
Xu RR, Yang WD, Niu KX, Wang B, Wang WM. An Update on the Evolution of Glucosyltransferase (Gtf) Genes in Streptococcus. Front Microbiol. 2018;9:2979.
PubMed
Google Scholar
Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80(Suppl 1):S3-s12.
PubMed
Google Scholar
Frenkel ES, Ribbeck K. Salivary mucins in host defense and disease prevention. J Oral Microbiol. 2015;7:29759.
PubMed
Google Scholar
Luo J, Wang Y, Wang K, Jiang W, Li X, Zhang L. Comparative proteomic analysis on acquired enamel pellicle at two time points in caries-susceptible and caries-free subjects. J Dent. 2020;94:103301.
PubMed
Google Scholar
Szkaradkiewicz-Karpińska AK, Ronij A, Goślińska-Kuźniarek O, Przybyłek I, Szkaradkiewicz A. MUC7 level as a new saliva risk factor for dental caries in adult patients. Int J Med Sci. 2019;16(2):241–6.
PubMed
PubMed Central
Google Scholar
Ruhl S, Rayment SA, Schmalz G, Hiller KA, Troxler RF. Proteins in whole saliva during the first year of infancy. J Dent Res. 2005;84(1):29–34.
PubMed
Google Scholar
Angwaravong O, Pitiphat W, Bolscher JG, Chaiyarit P. Evaluation of salivary mucins in children with deciduous and mixed dentition: comparative analysis between high and low caries-risk groups. Clin Oral Investig. 2015;19(8):1931–7.
PubMed
Google Scholar
Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26(3):303–4.
Google Scholar
Albrethsen J. The first decade of MALDI protein profiling: a lesson in translational biomarker research. J Proteomics. 2011;74(6):765–73.
PubMed
Google Scholar
Meng Q, Ge S, Yan W, Li R, Dou J, Wang H, Wang B, Ma Q, Zhou Y, Song M, et al. Screening for potential serum-based proteomic biomarkers for human type 2 diabetes mellitus using MALDI-TOF MS. Proteomics Clin Appl. 2017;11(3–4):56.
Google Scholar
Rovithi M, Lind JS, Pham TV, Voortman J, Knol JC, Verheul HM, Smit EF, Jimenez CR. Response and toxicity prediction by MALDI-TOF-MS serum peptide profiling in patients with non-small cell lung cancer. Proteomics Clin Appl. 2016;10(7):743–9.
PubMed
Google Scholar