Litsas G, Acar A. A review of early displaced maxillary canines: etiology, diagnosis and interceptive treatment. Open Dent J. 2011;5:39–47.
Article
Google Scholar
Alhammadi MS, Asiri HA, Almashraqi AA. Incidence, severity and orthodontic treatment difficulty index of impacted canines in Saudi population. J Clin Exp Dent. 2018;10(4):e327–34.
PubMed
PubMed Central
Google Scholar
Becker A. In defense of the guidance theory of palatal canine displacement. Angle Orthod. 1995;65(2):95–8.
PubMed
Google Scholar
Becker A, Chaushu S. Etiology of maxillary canine impaction: a review. Am J Orthod Dentofac Orthop. 2015;148(4):557–67.
Article
Google Scholar
Peck S, Peck L, Kataja M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod. 1994;64(4):249–56.
PubMed
Google Scholar
Alassiry AM, Hakami Z. Root resorption of adjacent teeth associated with maxillary canine impaction in the Saudi Arabian population: a cross-sectional cone-beam computed tomography study. J Appl Sci. 2022;12(1):334.
Article
Google Scholar
Alemam AA, Alhaija ESA, Mortaja K, AlTawachi A. Incisor root resorption associated with palatally displaced maxillary canines: analysis and prediction using discriminant function analysis. Am J Orthod Dentofac Orthop. 2020;157(1):80–90.
Article
Google Scholar
Ali IH, Al-Turaihi BA, Mohammed LK, Alam MK. Root resorption of teeth adjacent to untreated impacted maxillary canines: a CBCT study. Biomed Res. Int. 2021;2021.
Alqerban A, Jacobs R, Lambrechts P, Loozen G, Willems G. Root resorption of the maxillary lateral incisor caused by impacted canine: a literature review. Clin Oral Investig. 2009;13(3):247–55.
Article
Google Scholar
Schroder AGD, Guariza-Filho O, de Araujo CM, Ruellas AC, Tanaka OM, Porporatti AL. To what extent are impacted canines associated with root resorption of the adjacent tooth? A systematic review with meta-analysis. J Am Dent Assoc. 2018;149(9):765-777.e768.
Article
Google Scholar
Becker A, Chaushu S. Long-term follow-up of severely resorbed maxillary incisors after resolution of an etiologically associated impacted canine. Am J Orthod Dentofac Orthop. 2005;127(6):650–4.
Article
Google Scholar
Falahat B, Ericson S, Mak D’Amico R, Bjerklin K. Incisor root resorption due to ectopic maxillary canines: a long-term radiographic follow-up. Angle Orthod. 2008;78(5):778–85.
Article
Google Scholar
Al Naqbi I. Effectiveness of orthodontic procedures, alternative or adjunctive to extraction of the primary canines, for interceptive management of palatally displaced permanent canines: a systematic review. Hamdan Bin Mohammed College of Dental Medicine of the Mohammed Bin Rashid University of Medicine and Health Sciences, Master Thesis; 2018.
Alqerban A, Jacobs R, Fieuws S, Nackaerts O, Willems G, Consortium SP. Comparison of 6 cone-beam computed tomography systems for image quality and detection of simulated canine impaction-induced external root resorption in maxillary lateral incisors. Am J Orthod Dentofac Orthop. 2011;140(3):e129–39.
Article
Google Scholar
Ericson S, Kurol J. Radiographic examination of ectopically erupting maxillary canines. Am J Orthod Dentofac Orthop. 1987;91(6):483–92.
Article
Google Scholar
Kalavritinos M, Benetou V, Bitsanis E, Sanoudos M, Alexiou K, Tsiklakis K, Tsolakis AI. Incidence of incisor root resorption associated with the position of the impacted maxillary canines: a cone-beam computed tomographic study. Am J Orthod Dentofac Orthop. 2020;157(1):73–9.
Article
Google Scholar
Rafflenbeul F, Gros CI, Lefebvre F, Bahi-Gross S, Maizeray R, Bolender Y. Prevalence and risk factors of root resorption of adjacent teeth in maxillary canine impaction, among untreated children and adolescents. Eur J Orthod. 2019;41(5):447–53.
Article
Google Scholar
Leite Hde R, Oliveira GS, Brito HH. Labially displaced ectopically erupting maxillary permanent canine: interceptive treatment and long-term results. Am J Orthod Dentofac Orthop. 2005;128(2):241–51.
Article
Google Scholar
Grisar K, Luyten J. Interventions for impacted maxillary canines: a systematic review of the relationship between initial canine position and treatment outcome. Orthod Craniofac Res. 2021;24(2):180–93.
Article
Google Scholar
Baccetti T, Mucedero M, Leonardi M, Cozza P. Interceptive treatment of palatal impaction of maxillary canines with rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofac Orthop. 2009;136(5):657–61.
Article
Google Scholar
Liu D-g, Zhang W-l, Zhang Z-y, Wu Y-t, Ma X-c. Localization of impacted maxillary canines and observation of adjacent incisor resorption with cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2008;105(1):91–8.
Article
Google Scholar
Haney E, Gansky SA, Lee JS, Johnson E, Maki K, Miller AJ, Huang JC. Comparative analysis of traditional radiographs and cone-beam computed tomography volumetric images in the diagnosis and treatment planning of maxillary impacted canines. Am J Orthod Dentofac Orthop. 2010;137(5):590–7.
Article
Google Scholar
Almuhtaseb E, Mao J, Mahony D, Bader R, Zhang ZX: Three-dimensional localization of impacted canines and root resorption assessment using cone beam computed tomography. J Huazhong Univ Sci Technol Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2014;34(3):425–30.
Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2005;128(4):418–23.
Article
Google Scholar
Cuminetti F, Boutin F, Frapier L. Predictive factors for resorption of teeth adjacent to impacted maxillary canines. Int Orthod. 2017;15(1):54–68.
PubMed
Google Scholar
Ericson S, Kurol J. Incisor root resorptions due to ectopic maxillary canines imaged by computerized tomography: a comparative study in extracted teeth. Angle Orthod. 2000;70(4):276–83.
PubMed
Google Scholar
Marra P, Nucci L, Abdolreza J, Perillo L, Itro A, Grassia V. Odontoma in a young and anxious patient associated with unerupted permanent mandibular cuspid: a case report. J Int Oral Health. 2020;12(2):182–6.
Article
Google Scholar
Radiology. AAoOaM. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. In: Position statement by the American Academy of Oral and Maxillofacial Radiology. vol. 116. USA: Oral Surg Oral Med Oral Pathol Oral Radiol; 2013. p. 238–57.
Montes-Díaz ME, Martínez-González A, Arriazu-Navarro R, Alvarado-Lorenzo A, Gallardo-López NE, Ortega-Aranegui R. Skeletal and dental morphological characteristics of the maxillary in patients with impacted canines using cone beam computed tomography: a retrospective clinical study. J Pers Med. 2022;12(1):96.
Article
Google Scholar
Cao D, Zhu L, Chen Y, Xie L, Yan B, Sun Z. Buccally impacted maxillary canines increase the likelihood of root separation in adjacent first premolars. Oral Dis. 2017;23(1):36–41.
Article
Google Scholar
Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118(2):115–28.
Article
Google Scholar
Ericson SBK, Falahat B. Does the canine dental follicle cause resorption of permanent incisor roots? A computed tomographic study of erupting maxillary canines. Angle Orthod. 2001;72:95–104.
Google Scholar
Oberoi S, Knueppel S. Three-dimensional assessment of impacted canines and root resorption using cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(2):260–7.
Article
Google Scholar
da Silva Santos LM, Bastos LC, Oliveira-Santos C, da Silva SJ, Neves FS, Campos PS. Cone-beam computed tomography findings of impacted upper canines. Imaging Sci Dent. 2014;44(4):287–92.
Article
Google Scholar
Dekel E, Nucci L, Weill T, Flores-Mir C, Becker A, Perillo L, Chaushu S. Impaction of maxillary canines and its effect on the position of adjacent teeth and canine development: a cone-beam computed tomography study. Am J Orthod Dentofac Orthop. 2021;159(2):e135–47.
Article
Google Scholar
Lai CS, Bornstein MM, Mock L, Heuberger BM, Dietrich T, Katsaros C. Impacted maxillary canines and root resorptions of neighbouring teeth: a radiographic analysis using cone-beam computed tomography. Eur J Orthod. 2013;35(4):529–38.
Article
Google Scholar
Awad GH, Hashem H, Nguyen H. Identity and ethnic/racial self-labeling among Americans of Arab or Middle Eastern and North African descent. Identity. 2021;21(2):115–30.
Article
Google Scholar
Deng Y, Sun Y, Xu T. Evaluation of root resorption after comprehensive orthodontic treatment using cone beam computed tomography (CBCT): a meta-analysis. BMC Oral Health. 2018;18(1):1–4.
Article
Google Scholar
Lo Giudice A, Leonardi R, Ronsivalle V, Allegrini S, Lagravère M, Marzo G, Isola G. Evaluation of pulp cavity/chamber changes after tooth-borne and bone-borne rapid maxillary expansions: a CBCT study using surface-based superimposition and deviation analysis. Clin Oral Investig. 2021;25(4):2237–47.
Article
Google Scholar
Stadlinger B, Valdec S, Wacht L, Essig H, Winklhofer S. 3D-cinematic rendering for dental and maxillofacial imaging. Dentomaxillofac Radiol. 2020;49(1):20190249.
Article
Google Scholar