Pabari S, Moles DR, Cunningham SJ. Assessment of motivation and psychological characteristics of adult orthodontic patients. Am J Orthod Dentofac Orthop. 2011;140(6):e263–72. https://doi.org/10.1016/j.ajodo.2011.06.022.
Article
Google Scholar
Samsonyanová L, Broukal Z. A systematic review of individual motivational factors in orthodontic treatment: facial attractiveness as the main motivational factor in orthodontic treatment. Int J Dent. 2014;2014:938274. https://doi.org/10.1155/2014/938274.
Article
PubMed
PubMed Central
Google Scholar
Gwinnett AJ, Ceen RF. Plaque distribution on bonded brackets: a scanning microscope study. Am J Orthod. 1979;75(6):667–77. https://doi.org/10.1016/0002-9416(79)90098-8.
Article
PubMed
Google Scholar
Øgaard B, Rølla G, Arends J. Orthodontic appliances and enamel demineralization. Part 1. Lesion development. Am J Orthod Dentofac Orthop. 1988;94(1):68–73. https://doi.org/10.1016/0889-5406(88)90453-2.
Article
Google Scholar
Balenseifen JW, Madonia JV. Study of dental plaque in orthodontic patients. J Dent Res. 1970;49(2):320–4. https://doi.org/10.1177/00220345700490022101.
Article
PubMed
Google Scholar
Rosenbloom RG, Tinanoff N. Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment. Am J Orthod Dentofacial Orthop. 1991;100(1):35–7. https://doi.org/10.1016/0889-5406(91)70046-Y.
Article
PubMed
Google Scholar
Ahn S-J, Lim BS, Lee SJ. Prevalence of cariogenic streptococci on incisor brackets detected by polymerase chain reaction. Am J Orthod Dentfacial Orthop. 2007;131(6):736–41. https://doi.org/10.1016/j.ajodo.2005.06.036.
Article
Google Scholar
Owen OW. A study of bacterial counts (lactobacilli) in saliva related to orthodontic appliances; a preliminary report. Am J Orthod. 1949;35(9):672–8. https://doi.org/10.1016/0002-9416(49)90123-2.
Article
PubMed
Google Scholar
Sakamaki ST, Bahn AN. Effect of orthodontic banding on localized oral lactobacilli. J Dent Res. 1968;47(2):275–9. https://doi.org/10.1177/00220345680470021301.
Article
PubMed
Google Scholar
Hoerman KC, Keene HJ, Shkair IL, Burmeister JA. The association of Streptococcus mutans with early carious lesions in human teeth. J Am Dent Assoc. 1972;85(6):1349–52. https://doi.org/10.14219/jada.archive.1972.0511.
Article
PubMed
Google Scholar
Loesche WJ. Role of Streptococcus in human dental decay. Microbiol Rev. 1986;50(4):353–80. https://doi.org/10.1128/mr.50.4.353-380.1986.
Article
PubMed
PubMed Central
Google Scholar
Ikeda T, Sandham HJ, Bradley EL Jr. Changes in Streptococcus mutans and Lactobacilli in plaque in relation to the initiation of dental caries in Negro children. Archs oral Biol. 1973;18(4):555–66. https://doi.org/10.1016/0003-9969(73)90076-9.
Article
Google Scholar
Manji F, Fejerskov O, Nagelkerke NJ, Baelum V. A random effects model for some epidemiological features of dental caries. Community Dent Oral Epidemiol. 1991;19(6):324–8. https://doi.org/10.1111/j.1600-0528.1991.tb00180.x.
Article
PubMed
Google Scholar
Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod. 1982;81(2):93–8. https://doi.org/10.1016/0002-9416(82)90032-x.
Article
PubMed
Google Scholar
Lovrov S, Hertrich K, Hirschfelder U. Enamel demineralization during fixed orthodontic treatment- incidence and correlation to various oral-hygiene parameters. J Orofac Orthop. 2007;68(5):353–63. https://doi.org/10.1007/s00056-007-0714-1.
Article
PubMed
Google Scholar
Julien KC, Buschang PH, Campbell PM. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod. 2013;83(4):641–7. https://doi.org/10.2319/071712-584.1.
Article
PubMed
PubMed Central
Google Scholar
Ogaard B, Larsson E, Glans R, Henriksson T, Birkhed D. Antirmicrobial effect of a chlorhexidine-thyrnol varnish (Cervitec) in orthodontic patients. A prospective, randomized clinical trial. J Orofac Orthop. 1997;58(4):206–13. https://doi.org/10.1007/BF02679961.
Article
PubMed
Google Scholar
Ogaard B, Larsson E, Henriksson T, Birkhed D, Bishara SE. Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients. Am J Orthod Dentfacial Orthop. 2001;120(1):28–35. https://doi.org/10.1067/mod.2001.114644.
Article
Google Scholar
Bapna MS, Murphy R, Mukherjee S. Inhibition of bacterial colonization by antimicrobial agents incorporated into dental resins. J Oral Rehab. 1988;15(5):405–11.
Article
Google Scholar
Caldeira ÉM, Osório A, Lúcia E, Oberosler C, Vaitsman DS, Alviano DS, Nojima MC. Antimicrobial and fluoride release capacity of orthodontic bonding materials. J Appl Oral Sci. 2013;21(4):327–34. https://doi.org/10.1590/1678-775720130010.
Article
PubMed
PubMed Central
Google Scholar
Jeon HS, Choi CH, Kang SM, Kwon HK, Kim BI. Chlorhexidine-releasing orthodontic elastomerics. Dent Mater J. 2015;34(3):321–6. https://doi.org/10.4012/dmj.2014-216.
Article
PubMed
Google Scholar
Sodagar A, Akhavan A, Hashemi E, Arab S, Pourhajibagher M, Sodagar K, Kharrazifard MJ, Bahador A. Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles. Progress Orthod. 2016;17(1):1–7. https://doi.org/10.1186/s40510-016-0153-x.
Article
Google Scholar
Sodagar A, Akhoundi MSA, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, Mirhashemi AH. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J Orthod. 2017;22(5):67–74. https://doi.org/10.1590/2177-6709.22.5.067-074.oar.
Article
PubMed
PubMed Central
Google Scholar
Ma Y, Zhang N, Weir MD, Bai Y, Xu HHK. Novel multifunctional dental cement to prevent enamel demineralization near orthodontic brackets. J Dent. 2017;64:58–67. https://doi.org/10.1016/j.jdent.2017.06.004.
Article
PubMed
Google Scholar
Wang S, Wu J, Yang H, Liu X, Huang Q, Lu Z. Antibacterial activity and mechanism of Ag/ZnO nanocomposite against anaerobic oral pathogen Streptococcus mutans. J Mater Sci Mater Med. 2017;28(1):1–8. https://doi.org/10.1007/s10856-016-5837-8.
Article
Google Scholar
Hernandez-Gomora AE, Lara-Carrillo E, Robles-Navarro JB, Scougall-Vilchis RJ, Hernandez-Lopez S, Medina-Solis CE, Morales-Luckie RA. Biosynthesis of silver nanoparticles on orthodontic elastomeric modules: evaluation of mechanical and antibacterial properties. Molecules. 2017;22(9):1407. https://doi.org/10.3390/molecules22091407.
Article
PubMed Central
Google Scholar
Cao B, Wang Y, Li N, Liu B, Zhang Y. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO (2–x)N(y) thin film and examination of its antimicrobial performance. Dent Mater J. 2013;32(2):311–6. https://doi.org/10.4012/dmj.2012-155.
Article
PubMed
Google Scholar
Liu J, Lou Y, Zhang C, Yin S, Li H, Sun D, Sun X. Improved corrosion resistance and antibacterial properties of composite arch-wires by N-doped TiO2 coating. RSC Adv. 2017;7(69):43938–49. https://doi.org/10.1039/C7RA06960J.
Article
Google Scholar
Qadir M, Li Y, Wen C. Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: a review. Acta Biomater. 2019;89:14–32. https://doi.org/10.1016/j.actbio.2019.03.006.
Article
PubMed
Google Scholar
Mahan JE. Physical vapor deposition of thin films. 2000 Jan.
Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent Advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–946. https://doi.org/10.1021/cr030027b.
Article
PubMed
Google Scholar
Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010;89(11):1175–86. https://doi.org/10.1177/0022034510377794.
Article
PubMed
Google Scholar
Khan ST, Al-Khedhairy AA, Musarrat J. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. J Nanopart Res. 2015;17(6):1–16. https://doi.org/10.1007/s11051-015-3074-6.
Article
Google Scholar
Batra P. Applications of nanoparticles in orthodontics. In: Chaughule R, editor. Dental Applications of Nanotechnology. Cham: Springer; 2018. p. 81–105. https://doi.org/10.1007/978-3-319-97634-1_5.
Chapter
Google Scholar
Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infec (Larchmt). 2007;8(3):397–403. https://doi.org/10.1089/sur.2006.032.
Article
Google Scholar
Mhaske AR, Shetty PC, Bhat NS, Ramachandra CS, Laxmikanth SM, Nagarahalli K, Tekale PD. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus—an in vitro study. Prog Orthod. 2015. https://doi.org/10.1186/s40510-015-0110-0.
Article
PubMed
PubMed Central
Google Scholar
Ghasemi T, Arash V, Rabiee SM, Rajabnia R, Pourzare A, Rakhshan V. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study. Microsc Res Tech. 2017;80(6):599–607. https://doi.org/10.1002/jemt.22835.
Article
PubMed
Google Scholar
Reddy AK, Kambalyal PB, Shanmugasundaram K, Rajesh V, Donthula S, Patil SR. Comparative evaluation of antimicrobial efficacy of silver, titanium dioxide and zinc oxide nanoparticles against Streptococcus mutans. Pesq Bras Odontoped Clin Integr. 2018;18(1):e4150. https://doi.org/10.4034/PBOCI.2018.181.88.
Article
Google Scholar
Kachoei M, Nourian A, Divband B, Kachoei Z, Shirazi S. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy. Nanomedicine (Lond). 2016;11(19):2511–27. https://doi.org/10.2217/nnm-2016-0171.
Article
Google Scholar
Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents. 2012;40(2):135–9. https://doi.org/10.1016/j.ijantimicag.2012.04.012.
Article
PubMed
Google Scholar
Asha RPV, Low KMG, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w.
Article
Google Scholar
Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C, Dai J, Wang Q. Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials. 2012;33(6):1714–21. https://doi.org/10.1016/j.biomaterials.2011.11.030.
Article
PubMed
Google Scholar
Ramazanzadeh B, Jahanbin A, Yaghoubi M, Shahtahmassbi N, Ghazvini K, Shakeri M, Shafaee H. Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus mutans. J Dent (Shiraz). 2015;16(3):200–5.
Google Scholar
Petrie A, Sabin C. Medical statistics at a glance. 3rd ed. Oxford: Springer; 2009. p. 118–21.
Google Scholar
Mattox DM. Handbook of physical vapor deposition (PVD) processing. London: William Andrew; 2010.
Google Scholar
Salehi P, Babanouri N, Roein-Peikar M, Zare F. Long-term antimicrobial assessment of orthodontic brackets coated with nitrogen-doped titanium dioxide against Streptococcus mutans. Prog Orthod. 2018;19(1):35. https://doi.org/10.1186/s40510-018-0236-y.
Article
PubMed
PubMed Central
Google Scholar
Bishara SE, Ostby AW. White Spot Lesions: formation, prevention, and treatment. InSeminars in orthodontics. 2008;14(3):174–82. https://doi.org/10.1053/j.sodo.2008.03.002.
Article
Google Scholar
Nalini D. Assessment of Antibacterial Property of Silver Coated Stainless Steel Orthodontic Brackets against Streptococcus mutans, Lactobacillus Acidophilus and Porphyromonas Gingivalis: An In Vitro Study (Doctoral Dissertation, Tamil Nadu Government Dental College and Hospital, Chennai). 2017.
Hernández-Sierra JF, Ruiz F, Cruz Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén Ade J, Tapia-Perez H, Castanon GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4(3):237–40. https://doi.org/10.1016/j.nano.2008.04.005.
Article
PubMed
Google Scholar
Yamamoto O, Hotta M, Sawai J, Sasamoto T, Kojima H. Influence of powder characteristic of ZnO on antibacterial activity effect of specific surface area. J Ceramic Society Japan. 1998;106(1238):1007–11. https://doi.org/10.2109/jcersj.106.1007.
Article
Google Scholar
Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med. 2016;12(3):789–99. https://doi.org/10.1016/j.nano.2015.11.016.
Article
Google Scholar
Cardozo VF, Oliveira AG, Nishio EK, Perugini MR, Andrade CG, Silveira WD, Duran N, Andrade G, Kobayashi RK, Nakazato G. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob. 2013;12(1):12. https://doi.org/10.1186/1476-0711-12-12.
Article
PubMed
PubMed Central
Google Scholar
Perugini B-GR, Saori OE, Morey AT, Da Fernandes SM, Belotto MAE, Armando CLC, Kian D, Perugini MR, Nakazato G, Duran N, Nakamura CV, Yamauchi LM, Yamada-Ogatta SF. Effect of eugenol against Streptococcus agalactiae and synergistic interaction with biologically produced silver nanoparticles. Evid Based Complement Alternat Med. 2015. https://doi.org/10.1155/2015/861497.
Article
PubMed
PubMed Central
Google Scholar
Kachoei M, Divband B, Rahbar M, Esmaeilzadeh M, Ghanizadeh M, Alam M. A novel developed bioactive composite resin containing silver/zinc oxide (Ag/ZnO) nanoparticles as an antimicrobial material against Streptococcus mutans, lactobacillus, and candida albicans. Evid Based Complement Alternate Med. 2021;2021:4743411. https://doi.org/10.1155/2021/4743511.
Article
Google Scholar
Metin-Gürsoy G, Taner L, Akca G. Nanosilver coated orthodontic brackets: In vivo antibacterial properties and ion release. Eur J Orthod. 2017;39(1):9–16. https://doi.org/10.1093/ejo/cjv097.
Article
PubMed
Google Scholar
Arash V, Keikhaee F, Rabiee SM, Rajabnia R, Khafri S, Tavanafar S. Evaluation of antibacterial effects of silver-coated stainless steel orthodontic brackets. J Dent (Tehran). 2016;13(1):49–54.
Google Scholar