Skidmore KJ, Brook KJ, Thomson WM, Harding WJ. Factors influencing treatment time in orthodontic patients. Am J Orthod Dentofacial Orthop. 2006;129:230–8.
Article
PubMed
Google Scholar
Doshi-Mehta G et al. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289–97.
Article
PubMed
Google Scholar
Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment - a frontier in orthodontics. Prog Orthod. 2013;14:42.
Article
PubMed
PubMed Central
Google Scholar
Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004;22:541–6.
Article
PubMed
Google Scholar
Sefi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003;25:199–204.
Article
Google Scholar
Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates orthodontic tooth movement induced by closed coil springs in rats. EUR Orthod Soc. 2001;23:525–45.
Google Scholar
Madan MS, Liu ZJ, Gu GM, King GJ. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131(8):e1–e10.
PubMed
Google Scholar
Dias FJ, Issa JPM, de Carvalho Vicentini FTM, Fonseca MJV, Leão JC, Siéssere S, et al. Effects of low-level laser therapy on the oxidative metabolism and matrix proteins in the rat masseter muscle. Photomed Laser Surg. 2011;29(10):677–84.
Article
PubMed
Google Scholar
Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89–92.
Article
PubMed
Google Scholar
Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med. 2007;39(4):373–8.
Article
PubMed
Google Scholar
Zhang R, Mio Y, Pratt PF, Lohr N, Warltier DC, Whelan HT, et al. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol. 2009;46:4–14.
Article
PubMed
PubMed Central
Google Scholar
He WL, Li CJ, Liu ZP, Sun JF, Hu ZA, Yin X, et al. Efficacy of low-level laser therapy in the management of orthodontic pain: a systematic review and meta-analysis. Lasers Med Sci. 2013;28(6):1581–9.
Article
PubMed
Google Scholar
Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci. 2014;29(2):559–64.
Article
PubMed
Google Scholar
Panhoca VH, Lizarelli Rde F, Nunez SC, Pizzo RC, Grecco C, Paolillo FR, et al. Comparative clinical study of light analgesic effect on temperomandibular disorder (TMD) using red and infrared led therapy. Lasers Med Sci. 2015;30(2):815–22.
Article
PubMed
Google Scholar
Ferraresi C, Dos Santos RV, Marques G, Zangrande M, Leonaldo R, Hamblin MR, et al. Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci. 2015;30(4):1281–7.
Article
PubMed
Google Scholar
Pinheiro AL, Soares LG, Cangussú MC, Santos NR, Barbosa AF, Silveira JL. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Lasers Med Sci. 2012;27(5):903–16.
Article
PubMed
Google Scholar
Pinheiro AL, Soares LG, Aciole GT, Correia NA, Barbosa AF, Ramalho LM, et al. Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A. 2011;98(2):212–21.
Article
PubMed
Google Scholar
Corazza AV, Paolillo FR, Groppo FC, Bagnato VS, Caria PH. Phototherapy and resistance training prevent sarcopenia in ovariectomized rats. Lasers Med Sci. 2013;28(6):1467–74.
Article
PubMed
Google Scholar
Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye and Brain. 2011;3:49–67.
Google Scholar
Eells JT, Wong-Riley MT, Ver Hoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.
Article
PubMed
Google Scholar
Masha RT, Houreld NN, Abrahamse H. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg. 2013;31(2):47–53. doi:10.1089/pho.2012.3369. Epub 2012 Dec 16.
Article
PubMed
Google Scholar
Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100(6):3439–44.
Article
PubMed
PubMed Central
Google Scholar
Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Laser Surg Med. 2000;26:282–91.
Article
Google Scholar
Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117–20.
Article
PubMed
Google Scholar
Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29(3):191–6.
Article
PubMed
Google Scholar
Youssef M, Ashkar S, Hamade E, Gutnecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;1:27–33.
Google Scholar
Kalemaj Z, Debernardl CL, Buti J. Efficacy of surgical and non-surgical interventions on accelerating orthodontic tooth movement: a systematic review. Eur J Oral Implantol. 2015;8(1):9–24.
PubMed
Google Scholar
Carvalho-Lobato P, Garcia VJ, Kasem K, Ustrell-Torrent JM, Tallón-Walton V, Manzanares-Céspedes MC. Tooth movement in orthodontic treatment with low-level laser therapy: a systematic review of human and animal studies. Photomed Laser Surg. 2014;32(5):302–9.
Article
PubMed
Google Scholar
Domínguez A, Velásquez SA. Tooth movement in orthodontic treatment with low-level laser therapy: systematic review imprecisions. Photomed Laser Surg. 2014;32(8):476–7.
Article
PubMed
Google Scholar
Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerating orthodontic tooth movement: a systematic review and meta-analysis. J Dent. 2014;42(10):1300–19.
Article
PubMed
Google Scholar
Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod. 2013;14:30.
Article
PubMed
PubMed Central
Google Scholar
Little RM. The irregularity index: a quantitative score of mandibular anterior alignment. Am J Orthod. 1975;68(5):554–63.
Bernabé E, Flores-Mir C. Estimating arch length discrepancy through Little's Irregularity Index for epidemiological use. Eur J Orthod. 2006;28(3):269–73.
Article
PubMed
Google Scholar
Almasoud N, Bearn D. Little’s irregularity index: Photographic assessment vs study model assessment. Am J Orthod Dentofacial Orthop. 2010;138:787–94.
Article
PubMed
Google Scholar
Pandis N, Polychronopoulou A, Katsaros C, Eliades T. Comparative assessment of conventional and self-ligating appliances on the effect of mandibular intermolar distance in adolescent nonextraction patients: a single-center randomized controlled trial. Am J Orthod Dentofacial Orthop. 2011;140(3):e99–e105.
Article
PubMed
Google Scholar
Pandis N, Polychronopoulou A, Makou M, Eliades T. Mandibular dental arch changes associated with treatment of crowding using self-ligating and conventional brackets. Eur J Orthod. 2010;32:248–53.
Article
PubMed
Google Scholar
Babyak MA. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med. 2004;66(3):411–21.
PubMed
Google Scholar
Turbill EA, Richmond S. The time-factor in orthodontics: What influences the duration of treatments in National Health Service practices? Community Dent Oral Epidemiol. 2001;29(1):62–72.
Article
PubMed
Google Scholar
Reddy VB, Kumar TA, Prasad M, Nuvvula S, Patil RG, Reddy PK. A comparative in-vivo evaluation of the alignment efficiency of 5 ligation methods: A prospective randomized clinical trial. Eur J Dent. 2014;8(1):23–31.
Article
PubMed
PubMed Central
Google Scholar
Fleiss JL. The Design and Analysis of Clinical Experiments. New York: John Wiley Sons; 1986. p. 1–31.
Google Scholar
Bredin R. Light Transmission Profiles; Meat and Bone. Prepared for Biolux Research Ltd. August 2013.
Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter Sr TA, Brondon P, et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med. 2007;39:534–42.
Article
PubMed
Google Scholar
Mester E, Nagylucskay S, Waidelich W, Tisza S, Greguss P, Haina D, et al. Effects of direct laser radiation on human lymphocytes. Arch Dermatol Res. 1978;263:241–5.
Article
PubMed
Google Scholar
Hamblin MR, Demidova TN. Mechanisms for low-light therapy. Proc SPIE. 2006;6140:1–12.
Google Scholar
Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg. 2001;19:29–33.
Article
PubMed
Google Scholar
Goulart CS, Nouer PRA, Martins LM, Garbin IUL Lizarelli RFZ. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg. 2006;24:192–6.
Article
PubMed
Google Scholar
Garino F, Favero L. Control of tooth movements with the Speed system. Prog Orthod. 2003;4:23–30.
Article
PubMed
Google Scholar
Fleming P, DiBiase AT, Grammati S, Lee RT. Efficiency of mandibular arch alignment with 2 preadjusted edgewise appliances. Am J Orthod Dentofacial Orthop. 2009;135(5):597–602.
Article
PubMed
Google Scholar
Miles PG, Weyant RJ, Rustveld L. A Clinical Trial of Damon 2 vs Conventional Twin Brackets during Initial Alignment. Angle Orthod. 2006;76(3):480–5.
PubMed
Google Scholar
Ong E, McCallum H, Griffin MP, Ho C. Efficiency of self-ligating vs conventionally ligated brackets during initial alignment. Am J Orthod Dentofacial Orthop. 2006;138(2):e1–e.7.
Google Scholar
Papageorgiou SN, Konstantinidis I, Papadopoulou K, Jäger A, Bourauel C. Clinical effects of pre-adjusted edgewise orthodontic brackets: a systematic review and meta-analysis. Eur J Orthod. 2014;36(3):350–63.
Article
PubMed
Google Scholar
Sebastian B. Alignment efficiency of superelastic coaxial nickel-titanium vs superelastic single-stranded nickel-titanium in relieving mandibular anterior crowding: a randomized controlled prospective study. Angle Orthod. 2012;82(4):703–8.
Article
PubMed
Google Scholar