Sevari SP, Ansari S, Moshaverinia A. A narrative overview of utilizing biomaterials to recapitulate the salient regenerative features of dental-derived mesenchymal stem cells. Int J Oral Sci. 2021;13(1):22. https://doi.org/10.1038/s41368-021-00126-4.
Article
PubMed
PubMed Central
Google Scholar
Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):115. https://doi.org/10.1007/s10856-019-6318-7.
Article
PubMed
PubMed Central
Google Scholar
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and dentin–pulp complex regeneration: from the benchtop to clinical translation. Polymers. 2020;12(12):2935. https://doi.org/10.3390/polym12122935.
Article
PubMed Central
Google Scholar
Lai JY. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J Mater Sci Mater Med. 2010;21(6):1899–911. https://doi.org/10.1007/s10856-010-4035-3.
Article
PubMed
Google Scholar
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart hydrogels in tissue engineering and regenerative medicine. Materials. 2019;12(20):3323. https://doi.org/10.3390/ma12203323.
Article
PubMed Central
Google Scholar
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–67. https://doi.org/10.1016/j.eurpolymj.2014.11.024.
Article
Google Scholar
Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017;111:1–26. https://doi.org/10.1016/j.mser.2016.11.001.
Article
PubMed
PubMed Central
Google Scholar
Fan C, Wang DA. Macroporous hydrogel scaffolds for three-dimensional cell culture and tissue engineering. Tissue Eng Part B Rev. 2017;23(5):451–61. https://doi.org/10.1089/ten.TEB.2016.0465.
Article
PubMed
Google Scholar
Tabata Y, Nagano A, Ikada Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng. 1999;5(2):127–38. https://doi.org/10.1089/ten.1999.5.127.
Article
PubMed
Google Scholar
Ishihara M, Obara K, Nakamura S, Fujita M, Masuoka K, Kanatani Y, Takase B, Hattori H, Morimoto Y, Ishihara M, Maehara T, Kikuchi M. Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs. 2006;9(1):8–16. https://doi.org/10.1007/s10047-005-0313-0.
Article
PubMed
Google Scholar
Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51. https://doi.org/10.1016/s0142-9612(03)00340-5.
Article
PubMed
Google Scholar
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316–42. https://doi.org/10.5339/gcsp.2013.38.
Article
PubMed
PubMed Central
Google Scholar
Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R. New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels. 2015;1(1):3–23. https://doi.org/10.3390/gels1010003.
Article
PubMed
PubMed Central
Google Scholar
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym. 2018;198:385–400. https://doi.org/10.1016/j.carbpol.2018.06.086.
Article
PubMed
Google Scholar
Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4(17):999–1030. https://doi.org/10.1098/rsif.2007.0220.
Article
PubMed
PubMed Central
Google Scholar
Popa EG, Carvalho PP, Dias AF, Santos TC, Santo VE, Marques AP, Viegas CA, Dias IR, Gomes ME, Reis RL. Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. J Biomed Mater Res A. 2014;102(11):4087–97. https://doi.org/10.1002/jbm.a.35081.
Article
PubMed
Google Scholar
Rasool A, Ata S, Islam A, Khan RU. Fabrication of novel carrageenan based stimuli responsive injectable hydrogels for controlled release of cephradine. RSC Adv. 2019;9(22):12282–90. https://doi.org/10.1039/c9ra02130b.
Article
PubMed
PubMed Central
Google Scholar
Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromol. 2009;10(6):1392–401. https://doi.org/10.1021/bm8014973.
Article
Google Scholar
Mokhtari H, Tavakoli S, Safarpour F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers. 2021;13(11):1744. https://doi.org/10.3390/polym13111744.
Article
PubMed
PubMed Central
Google Scholar
Nair PR, Sreeja S, Sailaja GS. In vitro biomineralization and osteogenesis of Cissus quadrangularis stem extracts: an osteogenic regulator for bone tissue engineering. J Biosci. 2021;46:88.
Article
Google Scholar
Tamburaci S, Kimna C, Tihminlioglu F. Novel phytochemical Cissus quadrangularis extract–loaded chitosan/Na-carboxymethyl cellulose-based scaffolds for bone regeneration. J Bioact Compat Polym. 2018;33(6):629–46. https://doi.org/10.1177/0883911518793913.
Article
Google Scholar
Sanyal A, Ahmad A, Sastry M. Calcite growth in Cissus quadrangularis plant extract, a traditional Indian bone-healing aid. Curr Sci. 2005;89:1742–5.
Google Scholar
Rode MP, Batti Angulski AB, Gomes FA, da Silva MM, Jeremias TDS, de Carvalho RG, Iucif Vieira DG, Oliveira LFC, Fernandes Maia L, Trentin AG, Hayashi L, de Miranda KR, de Aguiar AK, Rosa RD, Calloni GW. Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. J Biomater Appl. 2018;33(3):422–34. https://doi.org/10.1177/0885328218795569.
Article
PubMed
Google Scholar
Dhanasekaran S. Phytochemical characteristics of aerial part of Cissus quadrangularis (L) and its in-vitro inhibitory activity against leukemic cells and antioxidant properties. Saudi J Biol Sci. 2020;27(5):1302–9. https://doi.org/10.1016/j.sjbs.2020.01.005.
Article
PubMed
PubMed Central
Google Scholar
Ntungwe NE, Domínguez-Martín EM, Roberto A, Tavares J, Isca VMS, Pereira P, et al. Artemia species: an important tool to screen general toxicity samples. Curr Pharm. 2020;26(24):2892–908. https://doi.org/10.2174/1381612826666200406083035.
Article
Google Scholar
Patell VM. Cissus quadrangularis plant extracts for treating osteoporosis and the extraction process thereof [Internet]. WO2008081233A2, 2008. https://patents.google.com/patent/WO2008081233A2/en.
Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee IS, et al. Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med. 2014;11(4):255–65.
Article
Google Scholar
Niloy KK, Gulfam M, Compton KB, Li D, Huang GTJ, Lowe TL. Methacrylated hyaluronic acid-based hydrogels maintain stemness in human dental pulp stem cells. Regen Eng Transl Med. 2020;6(3):262–72.
Article
Google Scholar
Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015: 821279. https://doi.org/10.1155/2015/821279.
Article
PubMed
PubMed Central
Google Scholar
Mihaila SM, Popa EG, Reis RL, Marques AP, Gomes ME. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromol. 2014;15(8):2849–60. https://doi.org/10.1021/bm500036a.
Article
Google Scholar
González Ocampo JI, Bassous N, Ossa Orozco CP, Webster TJ. Evaluation of cytotoxicity and antimicrobial activity of an injectable bone substitute of carrageenan and nano hydroxyapatite. J Biomed Mater Res A. 2018;106(11):2984–93. https://doi.org/10.1002/jbm.a.36488.
Article
PubMed
Google Scholar
Pettinelli N, Rodríguez-Llamazares S, Bouza R, Barral L, Feijoo-Bandín S, Lago F. Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm. 2020;589: 119828. https://doi.org/10.1016/j.ijpharm.2020.119828.
Article
PubMed
Google Scholar
Diekjürgen D, Grainger DW. Polysaccharide matrices used in 3D in vitro cell culture systems. Biomaterials. 2017;141:96–115. https://doi.org/10.1016/j.biomaterials.2017.06.020.
Article
PubMed
Google Scholar
Jain A, Dixit J, Prakash D. Modulatory effects of Cissus quadrangularis on periodontal regeneration by bovine-derived hydroxyapatite in intrabony defects: exploratory clinical trial. J Int Acad Periodontol. 2008;10(2):59–65.
PubMed
Google Scholar
Altaweel AA, Baiomy AABA, Shoshan HS, Abbas H, Abdel-Hafiz AA, Gaber AE, Zewail AA, Elshiekh MAM. Evaluation of osteogenic potential of Cissus quadrangularis on mandibular alveolar ridge distraction. BMC Oral Health. 2021;21(1):491. https://doi.org/10.1186/s12903-021-01847-y.
Article
PubMed
PubMed Central
Google Scholar
Brahmkshatriya HR, Shah KA, Ananthkumar GB, Brahmkshatriya MH. Clinical evaluation of Cissus quadrangularis as osteogenic agent in maxillofacial fracture: a pilot study. Ayu. 2015;36(2):169–73. https://doi.org/10.4103/0974-8520.175542.
Article
PubMed
PubMed Central
Google Scholar
Nayak T. An assessment of the osteogenic potential of Cissus quadrangularis in mandibular fractures: a pilot study. J Maxillofac Oral Surg. 2020;19(1):106–12. https://doi.org/10.1007/s12663-019-01230-z.
Article
PubMed
Google Scholar
Udayakumar R, Sundaran M, Krishna R. Mineral and biochemical analysis of various parts of Cissus quadrangularis linn. Anc Sci Life. 2004;24(2):79–82.
PubMed
PubMed Central
Google Scholar
Potu BK, Rao MS, Nampurath GK, Chamallamudi MR, Nayak SR, Thomas H. Anti-osteoporotic activity of the petroleum ether extract of Cissus quadrangularis Linn in ovariectomized Wistar rats. Chang Gung Med J. 2010;33(3):252–7.
PubMed
Google Scholar
Aswar UM, Bhaskaran S, Mohan V, Bodhankar SL. Estrogenic activity of friedelin rich fraction (IND-HE) separated from Cissus quadrangularis and its effect on female sexual function. Pharmacogn Res. 2010;2(3):138–45. https://doi.org/10.4103/0974-8490.65507.
Article
Google Scholar
Ramachandran S, Fadhil L, Gopi C, Amala M, Dhanaraju MD. Evaluation of bone healing activity of Cissus quadrangularis (Linn), Cryptolepis buchanani, and Sardinella longiceps in Wistar rats. Beni-Suef Univ J Basic Appl Sci. 2021;10(1):30. https://doi.org/10.1186/s43088-021-00120-z.
Article
Google Scholar
Fuangtharnthip P, Chaitisanan A. Khovidhunkit siribang on. Cissus quadrangularis extract stimulated mineralized nodules of dental pulp cells; 2011.
Zhang Q, Fan M, Bian Z, Chen Z, Zhu Q. Immunohistochemistry of bone sialoprotein and osteopontin during reparative dentinogenesis in vivo. Chin J Dent Res. 2000;3(2):38–43.
PubMed
Google Scholar
Singh N, Singh V, Singh RK, Pant AB, Pal US, Malkunje LR, Mehta G. Osteogenic potential of cissus qudrangularis assessed with osteopontin expression. Natl J Maxillofac Surg. 2013;4(1):52–6. https://doi.org/10.4103/0975-5950.117884.
Article
PubMed
PubMed Central
Google Scholar
Guerra JM, Hanes MA, Rasa C, Loganathan N, Innis-Whitehouse W, Gutierrez E, Nair S, Banu J. Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats. J Bone Miner Metab. 2019;37(5):780–95. https://doi.org/10.1007/s00774-018-0983-3.
Article
PubMed
Google Scholar
Tasadduq R, Gordon J, Al-Ghanim KA, Lian JB, Van Wijnen AJ, Stein JL, Stein GS, Shakoori AR. Ethanol extract of Cissus quadrangularis enhances osteoblast differentiation and mineralization of murine pre-osteoblastic MC3T3-E1 cells. J Cell Physiol. 2017;232(3):540–7. https://doi.org/10.1002/jcp.25449.
Article
PubMed
Google Scholar
Cerutti PA. Oxidant stress and carcinogenesis. Eur J Clin Invest. 1991;21(1):1–5. https://doi.org/10.1111/j.1365-2362.1991.tb01350.x.
Article
PubMed
Google Scholar
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47. https://doi.org/10.1038/35041687.
Article
PubMed
Google Scholar
Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol. 1997;24(5):287–96. https://doi.org/10.1111/j.1600-051x.1997.tb00760.x.
Article
PubMed
Google Scholar
Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8:621. https://doi.org/10.1186/s13104-015-1618-6.
Article
PubMed
PubMed Central
Google Scholar
Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–53. https://doi.org/10.1016/j.biomaterials.2008.04.023.
Article
PubMed
Google Scholar
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166(2):182–94. https://doi.org/10.1016/j.jconrel.2012.12.013.
Article
PubMed
Google Scholar
Ghasemi-Mobarakeh L, Kolahreez D, Ramakrishna S, Williams DF. Key terminology in biomaterials and biocompatibility. Curr Opin Biomed Eng. 2019;10:45–50. https://doi.org/10.1016/j.cobme.2019.02.004.
Article
Google Scholar
Raut HK, Das R, Liu Z, Liu X, Ramakrishna S. Biocompatibility of biomaterials for tissue regeneration or replacement. Biotechnol J. 2020;15(12): e2000160. https://doi.org/10.1002/biot.202000160.
Article
PubMed
Google Scholar