Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater. 2004;20:449–56.
PubMed
Google Scholar
Gautam C, Joyner J, Gautam A, Rao J, Vajtai R. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalt Trans. 2016;45:19194–215.
Google Scholar
Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27:83–96.
PubMed
Google Scholar
Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc. 2000;83:461–87.
Google Scholar
Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20:1–25.
PubMed
Google Scholar
Triwatana P, Nagaviroj N, Tulapornchai C. Clinical performance and failures of zirconia-based fixed partial dentures: a review literature. J Adv Prosthodont. 2012;4:76–83.
PubMed
PubMed Central
Google Scholar
Lughi V, Sergo V. Low temperature degradation—aging—of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.
PubMed
Google Scholar
Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32:e327–37.
PubMed
Google Scholar
Baldissara P, Wandscher VFVF, Marchionatti AME, Parisi C, Monaco C, Ciocca L. Translucency of IPS e.max and cubic zirconia monolithic crowns. J Prosthet Dent. 2018;120:1–7.
Google Scholar
Sax C, Hämmerle CHF, Sailer I. 10-Year clinical outcomes of fixed dental prostheses with zirconia frameworks. Int J Comput Dent. 2011;14:183–202.
PubMed
Google Scholar
Larsson C, Vult Von Steyern P. Implant-supported full-arch zirconia-based mandibular fixed dental prostheses. Eight-year results from a clinical pilot study. Acta Odontol Scand. 2013;71:1118–22.
PubMed
Google Scholar
Sailer I, Pjetursson BE, Zwahlen M, Hämmerle CHF. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses. Clin Oral Implants Res. 2007;18:86–96.
PubMed
Google Scholar
Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: multiple-unit FDPs. Dent Mater. 2017;33:e48-51.
PubMed
Google Scholar
Tabatabaian F. Color aspect of monolithic zirconia restorations: a review. J Prosthodont. 2018. https://doi.org/10.1111/jopr.12906.
Article
PubMed
Google Scholar
Dentistry I, Bakitian F, Seweryniak P, Papia E, Larsson C, Von Steyern PV. Effect of different semimonolithic designs on fracture resistance and fracture mode of translucent and high-translucent zirconia crowns. Clin Cosmet Investig Dent. 2018;10:51–60.
Google Scholar
Tabatabaian F, Motamedi E, Sahabi M. Effect of thickness of monolithic zirconia ceramic on final color. J Prosthet Dent. 2018;120(2):257–62.
PubMed
Google Scholar
Sorrentino R, Triulzio C, Tricarico MG, Bonadeo G, Gherlone EF, Ferrari M. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater. 2016;61:328–33.
PubMed
Google Scholar
Jiang L, Zhao Y, Zhang J, Liao Y, Li W. Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics. Zhonghua Kou Qiang Yi Xue Za Zhi. 2010;45:376–80.
PubMed
Google Scholar
Anselmi-tamburini BU, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater. 2007;17:3267–73.
Google Scholar
Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24–34.
PubMed
Google Scholar
Zhang Y, Lawn BR, Malament KA, Van Thompson P, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont. 2006;19:442–8.
PubMed
Google Scholar
Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater. 2018;85:57–65.
PubMed
Google Scholar
Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont. 1995;8:105–16.
PubMed
Google Scholar
Cesar PF, Della Bona A, Scherrer SS, Tholey M, van Noort R, Vichi A, et al. ADM guidance—ceramics: fracture toughness testing and method selection. Dent Mater. 2017;33:575–84.
PubMed
Google Scholar
Zhang X, Liang W, Jiang F, Wang Z, Zhao J, Zhou C, et al. Effects of air-abrasion pressure on mechanical and bonding properties of translucent zirconia. Clin Oral Investig. 2020;25:1979–88.
PubMed
Google Scholar
Muñoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent. 2017;63:94–102.
PubMed
Google Scholar
Ramos CM, Cesar PF, Bonfante EA, Rubo JH, Wang L, Borges AFS. Fractographic principles applied to Y-TZP mechanical behavior analysis. J Mech Behav Biomed Mater. 2016;57:215–23.
PubMed
Google Scholar
Ghazy MH, Madina MM, Aboushelib MN. Influence of fabrication techniques and artificial aging on the fracture resistance of different cantilever zirconia fixed dental prostheses. J Adhes Dent. 2012;14:161–6.
PubMed
Google Scholar
Quinn JB, Quinn GD. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater. 2010;26:135–47.
PubMed
Google Scholar
Bütikofer L, Stawarczyk B, Roos M. Two regression methods for estimation of a two-parameter Weibull distribution for reliability of dental materials. Dent Mater. 2015;31:e33-50.
PubMed
Google Scholar
Reale Reyes A, Dennison JB, Powers JM, Sierraalta M, Yaman P. Translucency and flexural strength of translucent zirconia ceramics. J Prosthet Dent. 2021. https://doi.org/10.1016/j.prosdent.2021.06.019.
Article
PubMed
Google Scholar
Ban S, Anusavice KJ. Influence of test method on failure stress of brittle dental materials. J Dent Res. 1990;69:1791–9.
PubMed
Google Scholar
Lundberg K, Wu L, Papia E. The effect of grinding and/or airborne-particle abrasion on the bond strength between zirconia and veneering porcelain: a systematic review. Acta Biomater Odontol Scand. 2017;3:8–20.
PubMed
PubMed Central
Google Scholar
Wolfart M, Lehmann F, Wolfart S, Kern M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater. 2007;23:45–50.
PubMed
Google Scholar
Okada M, Taketa H, Torii Y, Irie M, Matsumoto T. Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals. Dent Mater. 2019;35:169–75.
PubMed
Google Scholar
El-Shrkawy ZR, El-Hosary MM, Saleh O, Mandour MH. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic. Futur Dent J. 2016;2:41–53.
Google Scholar
Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S, et al. Impact of sandblasting on the flexural strength of highly translucent zirconia. J Mech Behav Biomed Mater. 2021;115: 104268.
PubMed
Google Scholar
Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Effect of loading method on the fracture mechanics of two layered all-ceramic restorative systems. Dent Mater. 2007;23:952–9.
PubMed
Google Scholar
Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent. 2017;118:658–65.
PubMed
Google Scholar
Aung SSMP, Takagaki T, Lyann SK, Ikeda M, Inokoshi M, Sadr A, et al. Effects of alumina-blasting pressure on the bonding to super/ultra-translucent zirconia. Dent Mater. 2019;35:730–9.
PubMed
Google Scholar
Özcan M, Melo RM, Souza ROA, Machado JPB, Valandro LF, Botttino MA. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J Mech Behav Biomed Mater. 2013;20:19–28.
PubMed
Google Scholar
Guazzato M, Albakry M, Quach L, Swain MV. Influence of surface and heat treatments on the flexural strength of a glass-infiltrated alumina/zirconia-reinforced dental ceramic. Dent Mater. 2005;21:454–63.
PubMed
Google Scholar
Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater. 2008;24:633–8.
PubMed
Google Scholar
Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater. 1999;15:426–33.
PubMed
Google Scholar
Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater. 2018;34:508–18.
PubMed
Google Scholar
Denry IL, Holloway JA. Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics. J Biomed Mater Res B Appl Biomater. 2006;76:440–8.
PubMed
Google Scholar
Carrabba M, Keeling AJ, Aziz A, Vichi A, Fabian Fonzar R, Wood D, et al. Translucent zirconia in the ceramic scenario for monolithic restorations: a flexural strength and translucency comparison test. J Dent. 2017;60:70–6.
PubMed
Google Scholar
Stawarczyk B, Özcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CHF. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013;17:269–74.
PubMed
Google Scholar
Ilie N, Stawarczyk B. Quantification of the amount of light passing through zirconia: the effect of material shade, thickness, and curing conditions. J Dent. 2014;42:684–90.
PubMed
Google Scholar
Journal E, Dentistry R, Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent. 2018;26:62–74.
Google Scholar
Anusavice KJ, Shen C, Rawls HR. Phillips’ science of dental materials. Amsterdam: Elsevier Health Sciences; 2013.
Google Scholar
Ebeid K, Wille S, Salah T, Wahsh M, Zohdy M, Kern M. Evaluation of surface treatments of monolithic zirconia in different sintering stages. J Prosthodont Res. 2017;62(2):210–7.
PubMed
Google Scholar
Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016;59:128–38.
PubMed
Google Scholar
Swain MV, Hannink RHJ. Metastability of the martensitic transformation in a 12 mol% ceria-zirconia alloy: II, grinding studies. J Am Ceram Soc. 1989;72:1358–64.
Google Scholar
Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009;92:1901–20.
Google Scholar
Gaillard Y, Jiménez-Piqué E, Soldera F, Mücklich F, Anglada M. Quantification of hydrothermal degradation in zirconia by nanoindentation. Acta Mater. 2008;56:4206–16.
Google Scholar
Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004;25:5539–45.
PubMed
Google Scholar
Juy A, Anglada M. Surface phase transformation during grinding of Y-TZP. J Am Ceram Soc. 2007;90:2618–21.
Google Scholar
Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 2002;50:4555–62.
Google Scholar
Trustrum K, Jayatilaka ADS. Applicability of Weibull analysis for brittle materials. J Mater Sci. 1983;18:2765–70.
Google Scholar
Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent. 2005;33:9–18.
PubMed
Google Scholar
Pittayachawan P, McDonald A, Petrie A, Knowles JC. The biaxial flexural strength and fatigue property of Lava™ Y-TZP dental ceramic. Dent Mater. 2007;23:1018–29.
PubMed
Google Scholar
Prado RD, Pereira GKR, Bottino MA, de Melo RM, Valandro LF. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia. Braz Oral Res. 2017;31: e82.
PubMed
Google Scholar
Candido LM, Miotto LN, Fais LMG, Cesar PF, Pinelli LAP. Mechanical and surface properties of monolithic zirconia. Oper Dent. 2018;43:E119–28.
PubMed
Google Scholar
Ho C-J, Liu H-C, Tuan W-H. Effect of abrasive grinding on the strength of Y-TZP. J Eur Ceram Soc. 2009;29:2665–9.
Google Scholar