Shibata A, Ibaragi S, Mandai H, Tsumura T, Kishimoto K, Okui T, Hassan NMM, Shimo T, Omori K, Hu G-F, Takashiba S, Suga S, Sasaki A. Synthetic terrein inhibits progression of head and neck cancer by suppressing angiogenin production. Anticancer Res. 2016;36:2161–8.
PubMed
Google Scholar
Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S, Hu G-F. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res. 2005;65:1352–60.
Article
PubMed
Google Scholar
Shi H, Han C, Mao Z, Ma L, Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Eng Part A. 2008;14:1775–85.
Article
PubMed
Google Scholar
Kim B-S, Kim J-S, Yang S-S, Kim H-W, Lim HJ, Lee J. Angiogenin-loaded fibrin/bone powder composite scaffold for vascularized bone regeneration. Biomater Res. 2015;19:18.
Article
PubMed
PubMed Central
Google Scholar
Fierro FA, O’Neal AJ, Beegle JR, Chávez MN, Peavy TR, Isseroff RR, Egaña JT. Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells. Front Cell Dev Biol. 2015;3:68.
Article
PubMed
PubMed Central
Google Scholar
Pan S-C, Wu L-W, Chen C-L, Shieh S-J, Chiu H-Y. Angiogenin expression in burn blister fluid: implications for its role in burn wound neovascularization. Wound Repair Regen. 2012;20:731–9.
Article
PubMed
Google Scholar
Wang X, Zhang Y, Han C. Angiogenin, an angiogenic factor with potential for tissue engineering applications. Wound Repair Regen. 2014;22:288–9.
Article
PubMed
Google Scholar
Sheng J, Xu Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin (Shanghai). 2016;48:399–410.
Article
Google Scholar
El Karim IA, Linden GJ, Irwin CR, Lundy FT. Neuropeptides regulate expression of angiogenic growth factors in human dental pulp fibroblasts. J Endod. 2009;35:829–33.
Article
PubMed
Google Scholar
Chung CJ, Kim E, Song M, Park J-W, Shin S-J. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells. Odontology. 2016;104:143–51.
Article
PubMed
Google Scholar
Koutroubakis IE, Xidakis C, Karmiris K, Sfiridaki A, Kandidaki E, Kouroumalis EA. Serum angiogenin in inflammatory bowel disease. Dig Dis Sci. 2004;49:1758–62.
Article
PubMed
Google Scholar
Oikonomou KA, Kapsoritakis AN, Kapsoritaki AI, Manolakis AC, Tiaka EK, Tsiopoulos FD, Tsiompanidis IA, Potamianos SP. Angiogenin, angiopoietin-1, angiopoietin-2, and endostatin serum levels in inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:963–70.
Article
PubMed
Google Scholar
Kieran D, Sebastia J, Greenway MJ, King MA, Connaughton D, Concannon CG, Fenner B, Hardiman O, Prehn JHM. Control of motoneuron survival by angiogenin. J Neurosci. 2008;28:14056–61.
Article
PubMed
Google Scholar
Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4:269–73.
Article
PubMed
Google Scholar
Weremowicz S, Fox EA, Morton CC, Vallee BL. Localization of the human angiogenin gene to chromosome band 14q11, proximal to the T cell receptor alpha/delta locus. Am J Hum Genet. 1990;47:973–81.
PubMed
PubMed Central
Google Scholar
Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986;25:3527–32.
Article
PubMed
Google Scholar
Morelli T, Neiva R, Nevins ML, McGuire MK, Scheyer ET, Oh T-J, Braun TM, Nör JE, Bates D, Giannobile WV. Angiogenic biomarkers and healing of living cellular constructs. J Dent Res. 2011;90:456–62.
Article
PubMed
PubMed Central
Google Scholar
Weiss S, Zimmermann G, Pufe T, Varoga D, Henle P. The systemic angiogenic response during bone healing. Arch Orthop Trauma Surg. 2009;129:989–97.
Article
PubMed
Google Scholar
Kishimoto K, Liu S, Tsuji T, Olson KA, Hu G-F. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene. 2005;24:445–56.
Article
PubMed
Google Scholar
Jimi S, Ito K, Kohno K, Ono M, Kuwano M, Itagaki Y, Ishikawa H. Modulation by bovine angiogenin of tubular morphogenesis and expression of plasminogen activator in bovine endothelial cells. Biochem Biophys Res Commun. 1995;211:476–83.
Article
PubMed
Google Scholar
Xu Z, Tsuji T, Riordan JF, Hu G. The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun. 2002;294:287–92.
Article
PubMed
Google Scholar
Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai). 2008;40:619–24.
Article
Google Scholar
Li S, Hu G-F. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol. 2012;227:2822–6.
Article
PubMed
PubMed Central
Google Scholar
Müller H-D, Cvikl B, Janjić K, Nürnberger S, Moritz A, Gruber R, Agis H. Effects of prolyl hydroxylase inhibitor L-mimosine on dental pulp in the presence of advanced glycation end products. J Endod. 2015;41:1852–61.
Article
PubMed
Google Scholar
Kuchler U, Keibl C, Fügl A, Schwarze UY, Tangl S, Agis H, Gruber R. Dimethyloxalylglycine lyophilized onto bone substitutes increase vessel area in rat calvarial defects. Clin Oral Implants Res. 2015;26:485–91.
Article
PubMed
Google Scholar
Hadjipanayi E, Schilling AF. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organogenesis. 2013;9:261–72.
Article
PubMed
PubMed Central
Google Scholar
Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells. 2015;33:1818–28.
Article
PubMed
Google Scholar
Nouri F, Salehinejad P, Nematollahi-Mahani SN, Kamarul T, Zarrindast MR, Sharifi AM. Deferoxamine preconditioning of neural-like cells derived from human Wharton’s jelly mesenchymal stem cells as a strategy to promote their tolerance and therapeutic potential: an in vitro study. Cell Mol Neurobiol. 2016;36:689–700.
Article
PubMed
Google Scholar
Liu X-B, Wang J-A, Ji X-Y, Yu SP, Wei L. Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res Ther. 2014;5:111.
Article
PubMed
PubMed Central
Google Scholar
Jiang L, Peng W-W, Li L-F, Du R, Wu T-T, Zhou Z-J, Zhao J-J, Yang Y, Qu D-L, Zhu Y-Q. Effects of deferoxamine on the repair ability of dental pulp cells in vitro. J Endod. 2014;40:1100–4.
Article
PubMed
Google Scholar
Nakamura M, Yamabe H, Osawa H, Nakamura N, Shimada M, Kumasaka R, Murakami R, Fujita T, Osanai T, Okumura K. Hypoxic conditions stimulate the production of angiogenin and vascular endothelial growth factor by human renal proximal tubular epithelial cells in culture. Nephrol Dial Transplant. 2006;21:1489–95.
Article
PubMed
Google Scholar
Lai K, Luo C, Zhang X, Ye P, Zhang Y, He J, Yao K. Regulation of angiogenin expression and epithelial-mesenchymal transition by HIF-1α signaling in hypoxic retinal pigment epithelial cells. Biochim Biophys Acta. 1862;2016:1594–607.
Google Scholar
Müller H-D, Cvikl B, Gruber R, Watzek G, Agis H. Prolyl hydroxylase inhibitors increase the production of vascular endothelial growth factor in dental pulp-derived cells. J Endod. 2012;38:1498–503.
Article
PubMed
Google Scholar
Gruber R, Kandler B, Agis H, Fischer MB, Watzek G. Bone cell responsiveness to growth and differentiation factors under hypoxia in vitro. Int J Oral Maxillofac Implants. 2008;23:417–26.
PubMed
Google Scholar
Trimmel K, Cvikl B, Müller H-D, Nürnberger S, Gruber R, Moritz A, Agis H. L-mimosine increases the production of vascular endothelial growth factor in human tooth slice organ culture model. Int Endod J. 2015;48:252–60.
Article
PubMed
Google Scholar
Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006;24:2493–503.
Article
PubMed
Google Scholar
Laino G, d Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res. 2005;20:1394–402.
Article
PubMed
Google Scholar
Mirabet V, Solves P, Miñana MD, Encabo A, Carbonell-Uberos F, Blanquer A, Roig R. Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues. Cell Tissue Bank. 2008;9:1–10.
Article
PubMed
Google Scholar
Suchanek J, Soukup T, Visek B, Ivancakova R, Kucerova L, Mokry J. Dental pulp stem cells and their characterization. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009;153:31–5.
Article
PubMed
Google Scholar
Pérard M, Le Clerc J, Watrin T, Meary F, Pérez F, Tricot-Doleux S, Pellen-Mussi P. Spheroid model study comparing the biocompatibility of Biodentine and MTA. J Mater Sci Mater Med. 2013;24:1527–34.
Article
PubMed
Google Scholar
Hsiao ST, Lokmic Z, Peshavariya H, Abberton KM, Dusting GJ, Lim SY, Dilley RJ. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem Cells Dev. 2013;22:1614–23.
Article
PubMed
PubMed Central
Google Scholar
Wakayama H, Hashimoto N, Matsushita Y, Matsubara K, Yamamoto N, Hasegawa Y, Ueda M, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy. 2015;17:1119–29.
Article
PubMed
Google Scholar
Fujio M, Xing Z, Sharabi N, Xue Y, Yamamoto A, Hibi H, Ueda M, Fristad I, Mustafa K. Conditioned media from hypoxic-cultured human dental pulp cells promotes bone healing during distraction osteogenesis. J Tissue Eng Regen Med. 2015.
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol. 2016;68:13–20.
Article
PubMed
Google Scholar
Yamaguchi S, Shibata R, Yamamoto N, Nishikawa M, Hibi H, Tanigawa T, Ueda M, Murohara T, Yamamoto A. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep. 2015;5:16295.
Article
PubMed
PubMed Central
Google Scholar
Cho Y-H, Park H, Cho E-S, Kim W-J, Kang B-S, Park B-Y, Kim Y-J, Lee Y-I, Chang S-I, Park K. A novel way of therapeutic angiogenesis using an adeno-associated virus-mediated angiogenin gene transfer. Exp Mol Med. 2007;39:412–8.
Article
PubMed
Google Scholar