Mei DM, Zhao B, Xu H, Wang Y. Radiographic and clinical outcomes of rooted, platform-switched, microthreaded implants with a sandblasted, large-grid, and acid-etched surface: a 5-year prospective study. Clin Implant Dent Relat Res. 2017;19:1074–81.
Article
PubMed
Google Scholar
Scala R, Cucchi A, Ghensi P, Vartolo F. Clinical evaluation of satisfaction in patients rehabilitated with an immediately loaded implant-supported prosthesis: a controlled prospective study. Int J Oral Maxillofac Implants. 2012;27:911–9.
PubMed
Google Scholar
Moraschini V, da Poubel LAC, Ferreira VF, dos Barboza ESP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Maxillofac Surg. 2015;44:377–88.
Article
PubMed
Google Scholar
Malchiodi L, Balzani L, Cucchi A, Ghensi P, Nocini PF. Primary and secondary stability of implants in postextraction and healed sites: a randomized controlled clinical trial. Int J Oral Maxillofac Implants. 2016;31:1435–43.
Article
PubMed
Google Scholar
Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology. 2000;2017(73):7–21.
Google Scholar
Ekelund J-A, Lindquist LW, Carlsson GE, Jemt T. Implant treatment in the edentulous mandible: a prospective study on Brånemark system implants over more than 20 years. Int J Prosthodont. 2003;16:602–8.
PubMed
Google Scholar
Gross D, Gross K, Schmidt M. Ethical dilemmas of dental implantology: ready for aftercare? Quintessence Int. 2018;49:367–75.
PubMed
Google Scholar
Sakka S, Baroudi K, Nassani MZ. Factors associated with early and late failure of dental implants. J Investig Clin Dent. 2012;3:258–61.
Article
PubMed
Google Scholar
Ghensi P, Stablum W, Bettio E, Soldini MC, Tripi TR, Soldini C. Management of the exposure of a dense PTFE (d-PTFE) membrane in guided bone regeneration (GBR): a case report. Oral Implantol (Rome). 2017;10:335–42.
Article
Google Scholar
Klinge B, Klinge A, Bertl K, Stavropoulos A. Peri-implant diseases. Eur J Oral Sci. 2018;126(Suppl 1):88–94.
Article
PubMed
Google Scholar
Tarnow DP. Increasing prevalence of peri-implantitis: how will we manage? J Dent Res. 2016;95:7–8.
Article
PubMed
Google Scholar
Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res. 2017;96:31–7.
Article
PubMed
Google Scholar
Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol. 2018;45(Suppl 20):S286–91.
Article
PubMed
Google Scholar
Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42(Suppl 16):S158-171.
Article
PubMed
Google Scholar
Derks J, Schaller D, Håkansson J, Wennström JL, Tomasi C, Berglundh T. Peri-implantitis—onset and pattern of progression. J Clin Periodontol. 2016;43:383–8.
Article
PubMed
Google Scholar
Price JS, Tencer AF, Arm DM, Bohach GA. Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res. 1996;30:281–6.
Article
PubMed
Google Scholar
Verran J, Whitehead K. Factors affecting microbial adhesion to stainless steel and other materials used in medical devices. Int J Artif Organs. 2005;28:1138–45.
Article
PubMed
Google Scholar
Antoci V, King SB, Jose B, Parvizi J, Zeiger AR, Wickstrom E, et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J Orthop Res. 2007;25:858–66.
Article
PubMed
Google Scholar
Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91:470–80.
Article
PubMed
Google Scholar
Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33:637–52.
Article
PubMed
Google Scholar
Mao X, Auer DL, Buchalla W, Hiller K-A, Maisch T, Hellwig E, et al. Cetylpyridinium chloride: mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob Agents Chemother. 2020. https://doi.org/10.1128/AAC.00576-20.
Article
PubMed
PubMed Central
Google Scholar
Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria—is there cause for concern? Front Microbiol. 2019;10:587.
Article
PubMed
PubMed Central
Google Scholar
Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 2000;53:495–508.
Article
PubMed
Google Scholar
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87:427–44.
Article
PubMed
Google Scholar
Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57:609–18.
Article
PubMed
Google Scholar
Nitschke M, Costa SG, Contiero J. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog. 2005;21:1593–600.
Article
PubMed
Google Scholar
Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86:1323–36.
Article
PubMed
PubMed Central
Google Scholar
Kumar R, Das AJ. Application of rhamnolipids in medical sciences. In: Kumar R, Das AJ, editors. Rhamnolipid biosurfactant. Singapore: Springer; 2018. p. 79–87.
Chapter
Google Scholar
Ceresa C, Tessarolo F, Maniglio D, Tambone E, Carmagnola I, Fedeli E, et al. Medical-grade silicone coated with rhamnolipid R89 is effective against Staphylococcus spp. Biofilms Mol. 2019;24:3843.
Google Scholar
Ghensi P, Bettio E, Maniglio D, Bonomi E, Piccoli F, Gross S, et al. Dental implants with anti-biofilm properties: a pilot study for developing a new sericin-based coating. Materials (Basel). 2019;12:2429.
Article
Google Scholar
Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982;37:318–26.
Article
PubMed
PubMed Central
Google Scholar
Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40:175–9.
Article
PubMed
Google Scholar
Knobloch JK-M, Horstkotte MA, Rohde H, Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med Microbiol Immunol. 2002;191:101–6.
Article
PubMed
Google Scholar
Ceresa C, Tessarolo F, Caola I, Nollo G, Cavallo M, Rinaldi M, et al. Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol. 2015;118:1116–25.
Article
PubMed
Google Scholar
Little B, Wagner P, Ray R, Pope R, Scheetz R. Biofilms: an ESEM evaluation of artifacts introduced during SEM preparation. J Ind Microbiol. 1991;8:213–21.
Article
Google Scholar
Hrubanova K, Krzyzanek V, Nebesarova J, Ruzicka F, Pilat Z, Samek O. Monitoring Candida parapsilosis and Staphylococcus epidermidis biofilms by a combination of scanning electron microscopy and Raman spectroscopy. Sensors (Basel). 2018;18:4089.
Article
PubMed Central
Google Scholar
Tessarolo F, Caola I, Fedel M, Stacchiotti A, Caciagli P, Guarrera GM, et al. Different experimental protocols for decontamination affect the cleaning of medical devices. A preliminary electron microscopy analysis. J Hosp Infect. 2007;65:326–33.
Article
PubMed
Google Scholar
Signoretto C, Marchi A, Bertoncelli A, Burlacchini G, Milli A, Tessarolo F, et al. Effects of mushroom and chicory extracts on the shape, physiology and proteome of the cariogenic bacterium Streptococcus mutans. BMC Complement Altern Med. 2013;13:117.
Article
PubMed
PubMed Central
Google Scholar
Signoretto C, Marchi A, Bertoncelli A, Burlacchini G, Tessarolo F, Caola I, et al. Effects of mushroom and chicory extracts on the physiology and shape of Prevotella intermedia, a periodontopathogenic bacterium. J Biomed Biotechnol. 2011;2011:635348.
Article
PubMed
PubMed Central
Google Scholar
Bressan E, Tessarolo F, Sbricoli L, Caola I, Nollo G, Di Fiore A. Effect of chlorhexidine in preventing plaque biofilm on healing abutment: a crossover controlled study. Implant Dent. 2014;23:64–8.
Article
PubMed
Google Scholar
Tessarolo F, Piccoli F, Caola I, Tomasi C, Bressan E, Nollo G, et al. Optimizing protocols for preparation and imaging of natural teeth, dental implant and peri-implant tissues in high vacuum, low vacuum, and environmental SEM. J Appl Biomater Biomech. 2009;7:73–4.
Google Scholar
Berbel LO, do Banczek EP, Karoussis IK, Kotsakis GA, Costa I. Determinants of corrosion resistance of Ti–6Al–4V alloy dental implants in an In Vitro model of peri-implant inflammation. PLoS ONE. 2019;14:210530.
Google Scholar
Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60:46–9.
Article
Google Scholar
Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New developments of Ti-based alloys for biomedical applications. Materials (Basel). 2014;7:1709–800.
Article
PubMed Central
Google Scholar
Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect. 2009;72:104–10.
Article
PubMed
Google Scholar
Ata-Ali J, Candel-Marti ME, Flichy-Fernández AJ, Peñarrocha-Oltra D, Balaguer-Martinez JF, Peñarrocha DM. Peri-implantitis: associated microbiota and treatment. Med Oral Patol Oral Cir Bucal. 2011;16:e937-943.
Article
PubMed
Google Scholar
Tomasi C, Tessarolo F, Caola I, Wennström J, Nollo G, Berglundh T. Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin Oral Implants Res. 2014;25:997–1003.
Article
PubMed
Google Scholar
Tomasi C, Tessarolo F, Caola I, Piccoli F, Wennström JL, Nollo G, et al. Early healing of peri-implant mucosa in man. J Clin Periodontol. 2016;43:816–24.
Article
PubMed
Google Scholar
Ghensi P, Bressan E, Gardin C, Ferroni L, Ruffato L, Caberlotto M, et al. Osteo Growth Induction titanium surface treatment reduces ROS production of mesenchymal stem cells increasing their osteogenic commitment. Mater Sci Eng C Mater Biol Appl. 2017;74:389–98.
Article
PubMed
Google Scholar
Ghensi P, Bressan E, Gardin C, Ferroni L, Soldini MC, Mandelli F, et al. The biological properties of OGI surfaces positively act on osteogenic and angiogenic commitment of mesenchymal stem cells. Materials (Basel). 2017;10:1321.
Article
PubMed Central
Google Scholar
Simion M, Benigni M, Al-Hezaimi K, Kim DM. Early bone formation adjacent to oxidized and machined implant surfaces: a histologic study. Int J Period Restor Dent. 2015;35:9–17.
Google Scholar
Simion M, Gionso L, Grossi GB, Briguglio F, Fontana F. Twelve-year retrospective follow-up of machined implants in the posterior maxilla: radiographic and peri-implant outcome. Clin Implant Dent Relat Res. 2015;17(Suppl 2):e343-351.
Article
PubMed
Google Scholar
Silverstein LH, Lefkove MD, Garnick JJ. The use of free gingival soft tissue to improve the implant/soft-tissue interface. J Oral Implantol. 1994;20:36–40.
PubMed
Google Scholar
Bumgardner JD, Adatrow P, Haggard WO, Norowski PA. Emerging antibacterial biomaterial strategies for the prevention of peri-implant inflammatory diseases. Int J Oral Maxillofac Implants. 2011;26:553–60.
PubMed
Google Scholar
Pinchi V, Varvara G, Pradella F, Focardi M, Donati MD, Norelli G. Analysis of professional malpractice claims in implant dentistry in Italy from insurance company technical reports, 2006 to 2010. Int J Oral Maxillofac Implants. 2014;29:1177–84.
Article
PubMed
Google Scholar
Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis—a review. Head Face Med. 2014;10:34.
Article
PubMed
PubMed Central
Google Scholar
Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis. J Clin Periodontol. 2018;45(Suppl 20):S237–45.
Article
PubMed
Google Scholar
Schwarz F, Derks J, Monje A, Wang H-L. Peri-implantitis. J Periodontol. 2018;89(Suppl 1):S267–90.
Article
PubMed
Google Scholar
Qin S, Xu K, Nie B, Ji F, Zhang H. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity. J Biomed Mater Res A. 2018;106:2531–9.
Article
PubMed
Google Scholar
Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54.
Article
PubMed
Google Scholar
Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek. 2004;85:1–8.
Article
PubMed
Google Scholar
Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2003;81:316–22.
Article
PubMed
Google Scholar
de Araujo LV, Guimarães CR, Marquita RLDS, Santiago VMJ, de Souza MP, Nitschke M, et al. Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 2016;63:171–8.
Article
Google Scholar
Hajfarajollah H, Mehvari S, Habibian M, Mokhtarani B, Noghabi KA. Rhamnolipid biosurfactant adsorption on a plasma-treated polypropylene surface to induce antimicrobial and antiadhesive properties. RSC Adv. 2015;5:33089–97.
Article
Google Scholar
Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol. 2006;100:470–80.
Article
PubMed
Google Scholar
Meylheuc T, van Oss CJ, Bellon-Fontaine MN. Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. J Appl Microbiol. 2001;91:822–32.
Article
PubMed
Google Scholar
Zezzi do Valle Gomes M, Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control. 2012;25:441–7.
Article
Google Scholar
Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol. 2017;36:26–36.
Article
PubMed
Google Scholar
Otto M. Staphylococcal biofilms. In: Romeo T, editor. Bacterial biofilms. Berlin: Springer; 2008. p. 207–28.
Chapter
Google Scholar
Walencka E, Rózalska S, Sadowska B, Rózalska B. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol (Praha). 2008;53:61–6.
Article
Google Scholar
de Freitas FJ, Vieira EA, Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int. 2019;116:737–44.
Article
Google Scholar
Novaes AB Jr, de Souza SLS, de Barros RRM, Pereira KKY, Iezzi G, Piattelli A. Influence of implant surfaces on osseointegration. Braz Dent J. 2010;21:471–81.
Article
PubMed
Google Scholar
Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, Ramón-Torregrosa PJ, Díaz-Rodríguez L, García-Martínez O, et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A. 2010;365:222–9.
Article
Google Scholar
Le Guehennec L, Lopez-Heredia M-A, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535–43.
Article
PubMed
Google Scholar
Almas K, Smith S, Kutkut A. What is the best micro and macro dental implant topography? Dent Clin N Am. 2019;63:447–60.
Article
PubMed
Google Scholar
Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(2 SUPPL.):S3-14.
Article
PubMed
Google Scholar
Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach F-W, et al. Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants. 2008;23:327–34.
PubMed
Google Scholar
Cheng Y, Feng G, Moraru CI. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front Microbiol. 2019;10:191.
Article
PubMed
PubMed Central
Google Scholar
Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25:134–44.
Article
PubMed
Google Scholar
Teles FRF. The Microbiome of peri-implantitis: is it unique? Compend Contin Educ Dent. 2017;38(8 Suppl):22–5.
PubMed
Google Scholar
Sánchez MC, Llama-Palacios A, Fernández E, Figuero E, Marín MJ, León R, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014;30:1161–71.
Article
PubMed
Google Scholar
Kommerein N, Doll K, Stumpp NS, Stiesch M. Development and characterization of an oral multispecies biofilm implant flow chamber model. PLoS ONE. 2018;13:e0196967.
Article
PubMed
PubMed Central
Google Scholar