Chae Y, Yang M, Kim J. Release of TGF-β1 into root canals with various final irrigants in regenerative endodontics: an in vitro analysis. Int Endod J. 2018;51:1389–97.
Article
PubMed
Google Scholar
Leye Benoist F, Gaye Ndiaye F, Kane AW, Benoist HM, Farge P. Evaluation of mineral trioxide aggregate (MTA) versus calcium hydroxide cement (Dycal®) in the formation of a dentine bridge: a randomised controlled trial. Int Dent J. 2012;62:33–9.
Article
PubMed
Google Scholar
Phung S, Lee C, Hong C, Song M, Yi J, Stevenson R, et al. Effects of bioactive compounds on odontogenic differentiation and mineralization. J Dent Res. 2017;96:107–15.
Article
PubMed
Google Scholar
Smith A, Scheven B, Takahashi Y, Ferracane J, Shelton R, Cooper P. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57:109–21.
Article
PubMed
Google Scholar
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, et al. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med. 2018;13:207–18.
Article
Google Scholar
Liu Z, Chen T, Han Q, Chen M, You J, Fang F, et al. HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells. Mol Med Rep. 2018;17:1445–52.
PubMed
Google Scholar
Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T, Franco BD. The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng. 2018;9:1–18.
Article
Google Scholar
Lozano D, Fernández-de-Castro L, Portal-Núñez S, López-Herradón A, Dapía S, Gómez-Barrena E, Esbrit P. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia. Br J Pharmacol. 2011;162:1424–38.
Article
PubMed
PubMed Central
Google Scholar
Goldberg M. Pulp healing and regeneration: more questions than answers. Adv Dent Res. 2011;23:270–4.
Article
PubMed
Google Scholar
Wang J, Li J, Yang L, Zhou Y, Wang Y. Dose-dependence of PTH-related peptide-1 on the osteogenic induction of MC3T3-E1 cells in vitro. Medicine (Baltimore). 2017;96:e6637–43.
Article
Google Scholar
Martin TJ, Suva LJ. Parathyroid hormone-related protein in hypercalcaemia of malignancy. Clin Endocrinol. 1989;31:631–48.
Article
Google Scholar
Strewler GJ, Stern P, Jacobs JW, Eveloff J, Klein RF, Leung SC, et al. Parathyroid hormonelike protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J Clin Invest. 1987;80:1803–7.
Article
PubMed
PubMed Central
Google Scholar
Karaplis AC, Vautour L. Parathyroid hormone-related peptide and the parathyroid hormone/parathyroid hormone-related peptide receptor in skeletal development. Curr Opin Nephrol Hypertens. 1997;6:308–13.
Article
PubMed
Google Scholar
Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormone-related peptide (PTHrP) regulates fetal–placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci U S A. 1996;93:15233–8.
Article
PubMed
PubMed Central
Google Scholar
Karaplis AC, Goltzman D. PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord. 2000;1:331–41.
Article
PubMed
Google Scholar
Lefebvre V, Huang W, Harley VR, Goodfellow PN, De Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Mol Cell Biol. 1997;17:2336–46.
Article
PubMed
PubMed Central
Google Scholar
Kim YJ, Kim HJ, Im GI. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochem Biophys Res Commun. 2008;373:104–8.
Article
PubMed
Google Scholar
MacLean HE, Guo J, Knight MC, Zhang P, Cobrinik D, Kronenberg HM. The cyclin-dependent kinase inhibitor p57 Kip2 mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest. 2004;113:1334–43.
Article
PubMed
PubMed Central
Google Scholar
Hildreth BE III, Werbeck JL, Thudi NK, Deng X, Rosol TJ, Toribio RE. PTHrP 1-141 and 1-86 increase in vitro bone formation. J Surg Res. 2010;162:e9–17.
Article
PubMed
PubMed Central
Google Scholar
Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz V, Kronenberg HM, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8:277–89.
Article
PubMed
Google Scholar
Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci U S A. 1998;95:11846–51.
Article
PubMed
PubMed Central
Google Scholar
Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene. 2002;282:1–17.
Article
PubMed
Google Scholar
Abou-Samra AB, Jüppner H, Force T, Freeman MW, Kong XF, Schipani E, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A. 1992;89:2732–6.
Article
PubMed
PubMed Central
Google Scholar
Fukayama S, Schipani E, Jüppner H, Lanske B, Kronenberg HM, Abou-Samra AB, et al. Role of protein kinase-a in homologous down-regulation of parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acid in human osteoblast-like SaOS-2 cells. Endocrinology. 1994;134:1851–8.
Article
PubMed
Google Scholar
Martin TJ, Moseley JM, Williams ED. Parathyroid hormone-related protein: hormone and cytokine. J Endocrinol. 1997;154:S23–37.
PubMed
Google Scholar
Miao D, Li J, Xue Y, Su H, Karaplis AC, Goltzman D. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology. 2004;145:3554–62.
Article
PubMed
Google Scholar
Mau E, Whetstone H, Yu C, Hopyan S, Wunder JS, Alman BA. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol. 2007;305:28–39.
Article
PubMed
Google Scholar
Potts JT Jr, Jüppner H. Parathyroid Hormone and Parathyroid Hormone—Related Peptide in Calcium Homeostasis, Bone Metabolism, and Bone Development: The Proteins, Their Genes, and Receptors. In: Metabolic bone disease and clinically related disorders. 3rd ed. Academic press; 1998. p. 51–94..
Miao D, Tong XK, Chan GK, Panda D, McPherson PS, Goltzman D. Parathyroid hormone-related peptide stimulates osteogenic cell proliferation through protein kinase C activation of the Ras/mitogen-activated protein kinase signaling pathway. J Biol Chem. 2001;276:32204–13.
Article
PubMed
Google Scholar
Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal. 2009;21:1245–54.
Article
PubMed
PubMed Central
Google Scholar
Han JW, Lee BN, Kim SM, Koh JT, Min KS, Hwang YC. Odontogenic potential of parathyroid hormone–related protein (107-111) alone or in combination with mineral trioxide aggregate in human dental pulp cells. J Endod. 2017;43:2054–60.
Article
PubMed
Google Scholar
Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. Histopathological study on the PTHrP-induced incisor lesions in rats. Toxicol Pathol. 2003;31:480–5.
Article
PubMed
Google Scholar
Ge X, Li Z, Jing S, Wang Y, Li N, Lu J, et al. Parathyroid hormone enhances the osteo/odontogenic differentiation of dental pulp stem cells via ERK and P38 MAPK pathways. J Cell Physiol. 2020;235:1209–21.
Article
PubMed
Google Scholar
D'souza R, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni A, MacDougall M. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res. 1997;12:2040–9.
Article
PubMed
Google Scholar
Ono N, Nakashima K, Schipani E, Hayata T, Ezura Y, Soma K, et al. Constitutively active PTH/PTHrP receptor specifically expressed in osteoblasts enhances bone formation induced by bone marrow ablation. J Cell Physiol. 2012;227:408–15.
Article
PubMed
PubMed Central
Google Scholar
Chen S, Gluhak-Heinrich J, Wang Y, Wu Y, Chuang H, Chen L, et al. Runx2, osx, and dspp in tooth development. J Dent Res. 2009;88:904–9.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9–18.
Article
PubMed
Google Scholar
Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK. Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res. 2007;22:951–64.
Article
PubMed
Google Scholar
Tang SY, Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, et al. Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides. 2007;28:708–18.
Article
PubMed
Google Scholar
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, et al. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol. 2004;166:85–95.
Article
PubMed
PubMed Central
Google Scholar
Ngo VA, Jung JY, Koh JT, Oh WM, Hwang YC, Lee BN. Leptin induces odontogenic differentiation and angiogenesis in human dental pulp cells via activation of the mitogen-activated protein kinase signaling pathway. J Endod. 2018;44:585–91.
Article
PubMed
Google Scholar
Luo Z, Kohli MR, Yu Q, Kim S, Qu T, He W. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium−/calmodulin-dependent protein kinase II pathways. J Endod. 2014;40:937–42.
Article
PubMed
Google Scholar